
UNIT 1

Basic Concepts of OOPS

Before starting to learn C++ it is essential that one must have a basic knowledge of
the concepts of Object Oriented Programming. Some of the important object oriented
features are namely:

• Objects

• Classes

• Inheritance

• Data Abstraction

• Data Encapsulation

• Polymorphism

• Overloading

• Reusability
In order to understand the basic concepts in C++, the programmer must have a
command of the basic terminology in object-oriented programming. Below is a brief
outline of the concepts of Object-oriented programming languages:

Objects

Object is the basic unit of object-oriented programming. Objects are identified by its
unique name. An object represents a particular instance of a class. There can be more
than one instance of an object. Each instance of an object can hold its own relevant data.

An Object is a collection of data members and associated member functions also known
as methods.

Classes

Classes are data types based on which objects are created. Objects with similar properties
and methods are grouped together to form a Class. Thus a Class represents a set of
individual objects. Characteristics of an object are represented in a class as Properties
(Attributes). The actions that can be performed by objects become functions of the class
and are referred to as Methods (Functions).

OEC / IT / CS 2203 OOPS

For example consider we have a Class of Cars under which Santro Xing, Alto and
WaganR represents individual Objects. In this context each Car Object will have its own,
Model, Year of Manufacture, Colour, Top Speed, Engine Power etc., which form
Properties of the Car class and the associated actions i.e., object functions like Start,
Move, Stop form the Methods of Car Class.

No memory is allocated when a class is created. Memory is allocated only

when an object is created, i.e., when an instance of a class is created.

Inheritance

Inheritance is the process of forming a new class from an existing class or base class. The
base class is also known as parent class or super class. The new class that is formed is
called derived class. Derived class is also known as a child class or sub class. Inheritance
helps in reducing the overall code size of the program, which is an important concept in
object-oriented programming.

Data Abstraction

Data Abstraction increases the power of programming language by creating user defined
data types. Data Abstraction also represents the needed information in the program
without presenting the details.

Data Encapsulation

Data Encapsulation combines data and functions into a single unit called Class. When
using Data Encapsulation, data is not accessed directly; it is only accessible through the
functions present inside the class. Data Encapsulation enables the important concept of
data hiding possible.

Polymorphism

Polymorphism allows routines to use variables of different types at different times. An
operator or function can be given different meanings or functions. Polymorphism refers
to a single function or multi-functioning operator performing in different ways.

Overloading

Overloading is one type of Polymorphism. It allows an object to have different meanings,
depending on its context. When an exiting operator or function begins to operate on new
data type, or class, it is understood to be overloaded.

Reusability
This term refers to the ability for multiple programmers to use the same written
and debugged existing class of data. This is a time saving device and adds code
efficiency to
 OEC / IT / CS 2203 OOPS

the language. Additionally, the programmer can incorporate new features to the existing
class, further developing the application and allowing users to achieve increased
performance.

Introduction to C++

Variable, Constants and Data types in C++

Variables

A variable is the storage location in memory that is stored by its value. A variable is
identified or denoted by a variable name. The variable name is a sequence of one or more
letters, digits or underscore, for example: character _

Rules for defining variable name:

� A variable name can have one or more letters or digits or underscore
for example character _.

� White space, punctuation symbols or other characters are not permitted
to denote variable name.

� A variable name must begin with a letter.

.

� Variable names cannot be keywords or any reserved words of the
C++ programming language.

C++ is a case-sensitive language. Variable names written in capital letters differ from
variable names with the same name but written in small letters. For example, the
variable name EXFORSYS differs from the variable name exforsys.

Data Types

Below is a list of the most commonly used Data Types in C++ programming language

short int short integer.

int integer.

long int long integer.

float floating point

double double precision floating point number.

long double precision floating point number.
double

char single character.

bool boolean value. It can take one of two

 values True or False

Using variable names and data type, we shall now learn how to declare variables.

Declaring Variables:

OEC / IT / CS 2203 OOPS

In order for a variable to be used in C++ programming language, the variable must
first be declared. The syntax for declaring variable names is

data type variable name;

The date type can be int or float or any of the data types listed above. A variable name
is given based on the rules for defining variable name (refer above rules).

Example:
int a;

This declares a variable name a of type int.

If there exists more than one variable of the same type, such variables can be
represented by separating variable names using comma.

For instance

int x,y,z ;

This declares 3 variables x, y and z all of data type int.

The data type using integers (int, short int, long int) are further assigned a value of
signed or unsigned. Signed integers signify positive and negative number value.
Unsigned integers signify only positive numbers or zero.

For example it is declared as

unsigned short int a;
signed int z;

By default, unspecified integers signify a signed integer.

For example:

int a;
is declared a signed integer

It is possible to initialize values to variables:
data type variable name = value;

Example:
int a=0;
int b=5;

Constants

Constants have fixed value. Constants, like variables, contain data type. Integer constants
are represented as decimal notation, octal notation, and hexadecimal notation. Decimal
notation is represented with a number. Octal notation is represented with the number
preceded by a zero character. A hexadecimal number is preceded with the characters 0x.

Example

OEC / IT / CS 2203 OOPS

80 represent decimal

0115 represent octal
0x167 represent hexadecimal

By default, the integer constant is represented with a number.

The unsigned integer constant is represented with an appended character u. The long
integer constant is represented with character l.
Example:

78 represent int

85u present unsigned int
78l represent long

Floating point constants are numbers with decimal point and/or exponent.
Example

2.1567
4.02e24

These examples are valid floating point constants.

Floating point constants can be represented with f for floating and l for double
precision floating point numbers.

Character constants have single character presented between single quotes.

Example ‗c‘ ‗a‘

are all character constants.

Strings are sequences of characters signifying string constants. These sequence
of characters are represented between double quotes.

Example:

―Exforsys Training‖
is an example of string constant.

Referencing variables
The & operator is used to reference an object. When using this operator on an object,
you are provided with a pointer to that object. This new pointer can be used as a
parameter or be assigned to a variable.

C++ Objects and Classes

An Overview about Objects and Classes

In object-oriented programming language C++, the data and functions (procedures to
manipulate the data) are bundled together as a self-contained unit called an object. A
class is an extended concept similar to that of structure in C programming language, this

OEC / IT / CS 2203 OOPS

class describes the data properties alone. In C++ programming language, class describes
both the properties (data) and behaviors (functions) of objects. Classes are not objects,
but they are used to instantiate objects.

Features of Class:

Classes contain member data and member functions. As a unit, the collection of member
data and member functions is an object. Therefore, this unit of objects makes up a class.

How to write a Class:

In Structure in C programming language, a structure is specified with a name. The
C++ programming language extends this concept. A class is specified with a name
after the keyword class.

The starting flower brace symbol, {is placed at the beginning of the code. Following
the flower brace symbol, the body of the class is defined with the member functions
data. Then the class is closed with a flower brace symbol} and concluded with a colon;.

class exforsys
{

member data;
member functions;
……………

};

There are different access specifiers for defining the data and functions present inside
a class.

Access specifiers:

Access specifiers are used to identify access rights for the data and member functions of the
class. There are three main types of access specifiers in C++ programming language:

private
public
protected

� A private member within a class denotes that only members of the same class

have accessibility. The private member is inaccessible from outside the class.

� Public members are accessible from outside the class.

� A protected access specifier is a stage between private and public access. If
member functions defined in a class are protected, they cannot be accessed
from outside the class but can be accessed from the derived class.

When defining access specifiers, the programmer must use the keywords: private, public
or protected when needed, followed by a semicolon and then define the data and member
functions under it.

class exforsys

{
OEC / IT / CS 2203 OOPS

private: int

x,y;
public:

void sum()
{

………
………

}
};

In the code above, the member x and y are defined as private access specifiers.
The member function sum is defined as a public access specifier.

General Syntax of a class:

General structure for defining a class is:

class classname
{

acess specifier:
data member;
member functions;

acess specifier:
data member;
member functions;

};
Generally, in class, all members (data) would be declared as private and the member
functions would be declared as public. Private is the default access level for specifiers.
If no access specifiers are identified for members of a class, the members are defaulted
to private access.

class exforsys

{
int x,y;
public:
void sum()
{

………

………
}

};
In this example, for members x and y of the class exforsys there are no access specifiers
identified. exforsys would have the default access specifier as private.

Creation of Objects:

Once the class is created, one or more objects can be created from the class as objects
are instance of the class.

Juts as we declare a variable of data type int as:

OEC / IT / CS 2203 OOPS

int x;

Objects are also declared as:

class name followed by object name;
exforsys e1;
This declares e1 to be an object of class exforsys.

For example a complete class and object declaration is given below:

class exforsys

{
private: int
x,y;
public:

void sum()
{

………
………

}
};
main()
{

exforsys e1;
……………

……………
}

The object can also be declared immediately after the class definition. In other words
the object name can also be placed immediately before the closing flower brace symbol
} of the class declaration.

For example
class exforsys
{

private: int

x,y;
public:
void sum()
{

………
………

}
}e1 ;

The above code also declares an object e1 of class exforsys.
It is important to understand that in object-oriented programming language, when a class
is created no memory is allocated. It is only when an object is created is memory then
allocated.

OEC / IT / CS 2203 OOPS

Function Overloading

A function is overloaded when same name is given to different function. However,
the two functions with the same name will differ at least in one of the following.

a) The number of parameters
b) The data type of parameters

c) The order of appearance

These three together are referred to as the function signature.

For example if we have two functions :

void foo(int i,char a);
void boo(int j,char b);

Their signature is the same (int ,char) but a function

void moo(int i,int j) ; has a signature (int, int) which is different.

While overloading a function, the return type of the functions needs to be the same.

In general functions are overloaded when :
1. Functions differ in function signature.
2. Return type of the functions is the same.

Here s a basic example of function overloading

#include <iostream>
using namespace std;

class arith
{ public:

void calc(int num1)

{

cout<<‖Square of a given number: ― <<num1*num1 <<endl;
}

void calc(int num1, int num2)

{

cout<<‖Product of two whole numbers: ― <<num1*num2 <<endl;
}
};

int main() //begin of main function

OEC / IT / CS 2203 OOPS

{

arith a;
a.calc(5);
a.calc(6,7);

}
Let us see what we did in the function overloading example.

First the overloaded function in this example is calc. If you have noticed we have in our
arith class two functions with the name calc. The fist one takes one integer number as a
parameter and prints the square of the number. The second calc function takes two
integer numbers as parameters, multiplies the numbers and prints the product. This is
all we need for making a successful overloading of a function.

a) we have two functions with the same name : calc
b) we have different signatures : (int) , (int, int)

c) return type is the same : void

The result of the execution looks like this

Square of a given number: 25
Product of two whole numbers: 42

The result demonstrates the overloading concept. Based on the arguments we use when
we call the calc function in our code :

a.calc(5);
a.calc(6,7);
The compiler decides witch function to use at the moment we call the function.

C++ Friend Functions

Need for Friend Function

As discussed in the earlier sections on access specifiers, when a data is declared as
private inside a class, then it is not accessible from outside the class. A function that is
not a member or an external class will not be able to access the private data. A
programmer may have a situation where he or she would need to access private data from
non-memberfunctions and external classes. For handling such cases, the concept of
Friend functions is a useful tool.

What is a Friend Function?

A friend function is used for accessing the non-public members of a class. A class can
allow non-member functions and other classes to access its own private data, by making
them friends. Thus, a friend function is an ordinary function or a member of another
class.

How to define and use Friend Function in C++?

OEC / IT / CS 2203 OOPS

The friend function is written as any other normal function, except the function
declaration of these functions is preceded with the keyword friend. The friend function
must have the class to which it is declared as friend passed to it in argument.

Some important points to note while using friend functions in C++:

� The keyword friend is placed only in the function declaration of the
friend function and not in the function definition.

� It is possible to declare a function as friend in any number of classes.

� When a class is declared as a friend, the friend class has access to the private
data of the class that made this a friend.

� A friend function, even though it is not a member function, would have the
rights to access the private members of the class.

� It is possible to declare the friend function as either private or public.

� The function can be invoked without the use of an object. The friend function
has its argument as objects, seen in example below.

Example to understand the friend function:
#include <iostream.h>
class exforsys
{
private:

int a,b;
public:

void test()
{
a=100;
b=200;
}

friend int compute(exforsys e1)

//Friend Function Declaration with keyword friend and with the object of class
exforsys to which it is friend passed to it
};

int compute(exforsys e1)
{
//Friend Function Definition which has access to private
data return int(e1.a+e2.b)-5;
}

main()
{

exforsys e;

OEC / IT / CS 2203 OOPS

e.test();

cout<<‖The result is:‖<
//Calling of Friend Function with object as argument.

}

The output of the above program
is The result is:295

The function compute() is a non-member function of the class exforsys. In order to make
this function have access to the private data a and b of class exforsys , it is created as
afriend function for the class exforsys. As a first step, the function compute() is declared
as friend in the class exforsys as:

friend int compute (exforsys e1)

The keyword friend is placed before the function. The function definition is written as a
normal function and thus, the function has access to the private data a and b of the class
exforsys. It is declared as friend inside the class, the private data values a and b are
added, 5 is subtracted from the result, giving 295 as the result. This is returned by the
function and thus the output is displayed as shown above.

Constant and volatile member functions

A member function declared with the const qualifier can be called for constant and
nonconstant objects. A nonconstant member function can only be called for a
nonconstant object. Similarly, a member function declared with the volatile qualifier can
be called for volatile and nonvolatile objects. A nonvolatile member function can only be
called for a nonvolatile object.

static members

Class members can be declared using the storage class specifier static in the class
member list. Only one copy of the static member is shared by all objects of a class in a
program. When you declare an object of a class having a static member, the static
member is not part of the class object.

A typical use of static members is for recording data common to all objects of a class. For
example, you can use a static data member as a counter to store the number of objects of
a particular class type that are created. Each time a new object is created, this static data
member can be incremented to keep track of the total number of objects.

You access a static member by qualifying the class name using the :: (scope resolution)
operator. In the following example, you can refer to the static member f() of class type X
as X::f() even if no object of type X is ever declared:

class X {
static int
f(); };

int main()
{ X::f();

OEC / IT / CS 2203 OOPS

}

Pointers to classes

It is perfectly valid to create pointers that point to classes. We simply have to consider
that once declared, a class becomes a valid type, so we can use the class name as the
type for the pointer. For example:

CRectangle * prect;
is a pointer to an object of class CRectangle.

As it happened with data structures, in order to refer directly to a member of an object
pointed by a pointer we can use the arrow operator (->) of indirection. Here is an
example with some possible combinations:

// pointer to classes example
#include <iostream>
using namespace std;

class CRectangle {

int width, height;
public:

void set_values (int, int);
int area (void) {return (width * height);}

};

void CRectangle::set_values (int a, int b) {

width = a;
height = b;

}

int main () {

CRectangle a, *b, *c;
CRectangle * d = new
CRectangle[2]; b= new CRectangle;
c= &a;
a.set_values (1,2);
b->set_values (3,4);
d->set_values (5,6);
d[1].set_values (7,8);
cout << ―a area: ― << a.area() << endl;

cout << ―*b area: ― << b->area() << endl;

cout << ―*c area: ― << c->area() << endl;
cout << ―d[0] area: ― << d[0].area() <<
endl; cout << ―d[1] area: ― << d[1].area()
<< endl; delete[] d;
delete b;

OEC / IT / CS2203-OOPS / QB

return 0;

}

Output:

a area: 2
*b area: 12
*c area: 2
d[0] area: 30
d[1] area: 56

Next you have a summary on how can you read some pointer and class operators (*, &, .,
->, []) that appear in the previous example:

Expression Can be read as
*x pointed by x
&x address of x
x.y member y of object x
x->y member y of object pointed by x
(*x).y member y of object pointed by x (equivalent to the previous one)
X[0] first object pointed by x
X[1] second object pointed by x
X[n] (n+1)th object pointed by x

Difference between const variables and const object

Constant variables are the variables whose value cannot be changed through out the
programme but if any object is constant, value of any of the data members (const or non
const) of that object cannot be changed through out the programme. Constant object can
invoke only constant function.

Nested classes

A nested class is declared within the scope of another class. The name of a nested class is
local to its enclosing class. Unless you use explicit pointers, references, or object names,
declarations in a nested class can only use visible constructs, including type names, static
members, and enumerators from the enclosing class and global variables.

Member functions of a nested class follow regular access rules and have no special access
privileges to members of their enclosing classes. Member functions of the enclosing class
have no special access to members of a nested class. The following example
demonstrates this:

class A {
int x;

OEC / IT / CS2203-OOPS / QB

class B { };

class C {

 The compiler cannot allow the following
 declaration because A::B is private:

2. B b;

int y;
void f(A* p, int i) {

// The compiler cannot allow the following

// statement because A::x is private:
// p->x = i;

}

};

void g(C* p) {

// The compiler cannot allow the following

// statement because C::y is private:
// int z = p->y;

}
};

int main() { }

The compiler would not allow the declaration of object b because class A::B is private.
The compiler would not allow the statement p->x = i because A::x is private. The
compiler would not allow the statement int z = p->y because C::y is private.

Local classes

A local class is declared within a function definition. Declarations in a local class can
only use type names, enumerations, static variables from the enclosing scope, as well as
external variables and functions.

For example:

int x; // global variable

void f() // function definition

{

static int y; // static variable y can be used by

 // local class
int x; // auto variable x cannot be used by

 // local class
extern int g(); // extern function g can be used by

// local class

 OEC / IT / CS2203-OOPS / QB

class local // local class

{
int g() { return x; } // error, local variable x

// cannot be used by g

int h() { return y; } // valid,static variable y
int k() { return ::x; } // valid, global x
int l() { return g(); } // valid, extern function g

};

}

int main()

{

local* z; // error: the class local is not visible

// ...}
Member functions of a local class have to be defined within their class definition, if they
are defined at all. As a result, member functions of a local class are inline functions. Like
all member functions, those defined within the scope of a local class do not need the
keyword inline.

A local class cannot have static data members. In the following example, an attempt
to define a static member of a local class causes an error:

void f()

{

class local

{

int f(); // error, local class has noninline
// member function

int g() {return 0;} // valid, inline member function
static int a; // error, static is not allowed for

// local class
int b; // valid, nonstatic variable

};
}

// . . .
An enclosing function has no special access to members of the local class.

OEC / IT / CS2203-OOPS / QB

