
1.	
	UNIT-II
	INFINITE IMPUSE RESPONSE DEGITAL FILTERS
	syllabus: Review of Sesign of analog
	butter worth and cheby sher filter, Frequency
	frame framation in anerlog domain,
	Design of TIR digital fitter using impulse
	invariance Pechnique, Design of digital fitters using Bilineas Transform, Pre wasping,
C	Realization using direct, Cascade & parallel forms
	Review of Design of ANALOG BUTTERMORTH &
	CHERYSHEV FICTER
	Analog filters design to is well-developed.
	An techniques are based on taking an
~	analog filters and converting it to an
	digital Attes.
-51	Thus the design of IIR filter involves
	design of Ligital filter in analog domain
	and transforming the lesign into the
	digital domain.
	Sh-system dunction describing analog

	Impulse response of these filter coefficients
	is related to Aa (3) by laplace fransform
	Ha (S) = Shitte St dt
	H(S) can be described by linear constant
	coefficient difference egn
	Ear dy (t) = She dx (t)
10	Analogo ditto with H(S) is Stable if
	all its poles lie In the left half of
	S-plane.
	To convert analog to digital domain the
	feehnique should posses the following properties
0	D The j-a axis in s- Plane should map
	on to the unit livele in the 2-plane.
	2) The left half of S-plane should
	map into the inside of unit circle in
	As - Imain de convert a stable
	analog filter into a stable digital filter

1	
	IIR fitters design by at impulse Invariant Technique
	Desired impulse response of the digital filter is obtained by uniformly Sampling
	the impulse response of the equivalent
	analog filtor $h(n) = ha(nT) - 0$
	T+ sampling interval
.0	$Ha(S) = \frac{M}{S-Pi} \qquad \boxed{2}$
	By inverse taking invorse ha(t) = $\underset{i=1}{\overset{M}{\leq}}$ Ai $\underset{i=1}{\overset{Pit}{\leq}}$ Ua(t) — 3. i=1 Wa(t) — unit step function in continuous time.
	how of digital filter is obtained by uniformly
	dampting ha(t) $h(n) = ha(n\tau) = \underbrace{\sum_{i=1}^{M} Aie^{Pint} ua(nt) - \bigoplus_{i=1}^{M} Aie^{Pint} ua(nt)}_{\text{dystern Response}} \text{ of digital System can be orbtained}$
15	by taking Z-transform
	H(z) = S h(n) zh
	using eqn (1) H(2) = & [& Aie PinT va (nt)] zn

1 5	
PBIM	convert Analog filter into a digital
	fitter whose System function is
	fitter whose sys
	$H(3) = \underline{S+0.2}$
	(Sto.2)2 +9
	use impulse invariant fechnique. Assume T=18ec
	Salu
	System Response of analog filter is of
	the Standard form H(S) = Sta
D	(3+a)2+b2
~	a=0.2, b=3
	using Impulse invariant technique property
	- 971
	1 0 -000 -1 -201
	(S+a)+b2 1-2e (CSDI)2+e2-2
	HB) = 1-e0-27 (cos 37) =1
0	1-2e ⁰⁻² (c83T) 2+e ² (0.2) T
	15156
	1-0-0.2 (0x3)2-1
	1-20-0-2 003 3 21 +0 2
	= 1-(0-8187) (-0-99) =
	1-2(0.8187)(-0.99)=1+0.6703=2
	hus H(2) = 1+(6.8105)27
}	1+1-6210=1126420=22

	91R fitters design by Bilinear Transformation (BLT)
	257 technique is Suitable for LPF, BPF
	TI fachnique (b not suited go
	CT. Chaltanion
	APF, BRF. This while called Bilinans Francformator. The mapping feehnique called Bilinans Francformator.
	Also known as one-one mapping.
	Bilippue as Transformation is a conformal
0	mapping that transforms jor assis into the
	unit circle in the Z-Plane only once.
	Relation by analog and digital frequencies [-2 = 2/ tan w/2 (or)
C	$w = 2 \tan^{-1} \frac{-2T}{2}$
	BLT Transformation: $3=2$ $1-2$ $1+2$
	$S = 2 / \left(\frac{z-1}{z+1} \right)$
	Fraguency was ping:
	w = 2 tour 1 = T = 2 tan w/2

9.5	
	Fittine range in a is mapped only once into
	the range _TI = weTT.
	For hig frequencies mapping % to, It be comes nontinear, distortion is introduced in the comes nontinear, distortion is introduced in the analog filter. The frequency Scale of the analog filter. The mapping is nontinear & lower frequencies The mapping is nontinear & lower frequencies
	domain, whereas higher grapes the compressed. This is due to the compressed this due to the hondinearity of tangent function and hondinearity of tangent warping is usually called frequency warping
0	pre wasping can be eliminated by wasping analog tiltos. It can be pre wasping analog tiltos. It can be done by finding pre warping frequencies using the formula -re = 2/7 tan 10/2
	2p= 2/ tan 10p/2 2s=2/ tom WS/

Phlon Convert analog. Filter with System function

$$H(3) = \frac{3+0\cdot 1}{(S+0\cdot 1)^2 + 9}$$
into a digital IIR filter using

Bilinear Transformation. Digital filter should

have a resonant frequency of cor = Ty

Solu

Them the System function $-1 \cdot c = 3$
 $+ (S) = \frac{S+a}{2} + \frac{a}{2}$

The egn $-1 = \frac{2y}{2y} + \frac{a}{2y} = \frac{w}{2y}$

The egn $-1 = \frac{2y}{2y} + \frac{a}{2y} = \frac{w}{2y}$

The end of $-\frac{2y}{2y} + \frac{2y}{2y} = \frac{2y}{2y}$

The end of $-\frac{2y}{2y} + \frac{2y}{2$

T=0.276 sec.

$$H(2) = 1+0.027 = 1-0.973 = 2$$
 $9.572 = 11.84 = 1.177 = 2$

Better worth fitter Design

Poly

Potermine $H(2)$ for a butter worth fitter

Satisfying the following constraints

 $\{0.5 = |H(e^{jw})| = 1 \quad 0 \le w \le 172$
 $|H(e^{jw})| \le 0.2$

with $T=1$ sec. Apply Impulse invariant transformation

Gold Given $81 = 50.5 = 0.707$
 $9 = 0.2$
 $9 = 0.2$
 $9 = 172$
 $9 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$
 $1 = 172$

$$= \frac{1}{2} \log \left(\frac{1}{(0.700)^{2}} - \frac{1}{(0.700)^{2}} \right)$$

$$= \frac{1}{2} \log \left(\frac{24}{10} \right) = 3.91$$

$$= \frac{1}{2} \log \left(\frac{24}{10}$$

K=1,2, b_1 =
$$2\sin(\pi)$$
 = $2\sin(\pi)$ = 0.76536
 $G = 1$
 $K=2$, $b_2 = 2\sin(\frac{3\pi}{8}) = 1.84776$.

 $C_2 = 1$

parameter B_k :

 $A = \frac{1}{1} B_k$ for Never $A = 1$, $B_k = 1$

Here $A = 1$, $B_k = 1$
 $B_1 B_2 = 1$

Substitute coefficients & parameter in $B_k = 1$
 $B_1 B_2 = 1$

Substitute $C_1 = 1 \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{1} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{1} \frac{1}{3} \frac{1}{3$

Comparing the Coefficients of
$$3^3$$
, 3^2 , 3 a constant

 $6.086 = A3^3 + B3^2 + 29025 RS + 2.467 AS$
 $13.467B + CS^3 + DS^2 + 1.4022SC + 1.2022SD$
 $12.467 CS + 2.467 D$
 13^3 coefficients 13^3 1

H2(s) can be written as

H2(s) = 1.4509
$$\begin{bmatrix} 5+1.45 \\ (2+1.45)^2+6.609 \end{bmatrix} + 3.4903 \underbrace{6.604}_{(6+1.45)^2} + (6.609)^2 \end{bmatrix}$$

Steps: Determination of H(z)

$$\therefore 377 \text{ is Used, so use the formula.}_{(6+0)^2+b^2} = 1-2e^{-47}(cs.b7) = 1+2e^{-47}(cs.b7) = 1$$

	Frequency Transformation IN ANALOG DOMAIN
	Grequency transformation is used to design low pass filters with different page hand frequencies,
	high pass fillters, Band pass filters Band stop
	filters from a normalized low pass analog silter
	LPF to LPF
0	S-3/ = Transformation used
	a moralized Lipp
	To degign: To have LPF with different cutoff
	frequency 12c
	APF to HPF
	Griven: Normalized LPF
4.	To design: HPF with catoff freq -Ac
- 1	Transformation S-> -rc
17.23	LPF to BPF
	Given: Mormalized LPF
	To design: BPF with cutofol frag - 2, -20 trans formation
	$8 \rightarrow 8^2 + n_2 n_0$

A:
$$-2^{2} + 2 \cdot 2 \cdot 0$$
 $-2 \cdot (-2 \cdot 2)$

B: $-2^{2} - 2 \cdot 2 \cdot 0$
 $2 \cdot (-2 \cdot 2)$

(iv) LPF to BSF

Other: Normalized LPF

To have a BSF with Cutoff frequencies, -20 , -20

Fransfermetion $S \rightarrow S(-20 - -20)$
 $S^{2} + 2 \cdot 2 \cdot 0$
 $-2 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$

A: $-2 \cdot (-20 - -20)$
 $-2^{2} + 2 \cdot 2 \cdot 0$

(V) Resign of IIR filter using IIT

 $1 \cdot (-2) = S \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 20)$
 $1 \cdot (-20 - 20) \cdot (-20 - 2$

Substitute
$$S=\sigma+j-L$$
 $Z=Ye^{j\omega}$
 $Z=Ye^{j$

	*
	Steps to design digital filters using IIT
	D For a given specification find Hals)
	transfer function of the filter.
	a) delect dampting rate of digital filter Treckemples
	3) Express Ha (s) as Sour of Single pole filters
	$Ha(3) = \frac{N}{E} \frac{Ck}{3-Pk}$
	1. Compute Z-transform of digital filter
0	$H(z) = \frac{N}{S} \frac{CK}{1 - e^{Rk}} \frac{CK}{z} - 1$
	For nigh sampting rate
	$H(z) = \frac{N}{s} \frac{T_{ck}}{1 - e^{PkT_z - 1}}$
	Steps to design digital filter using BLT
0	D from the given specification, find Premarping
	analog frequencies using the formula.
	$\Delta = 2/\tan w/2$
	2) Using analog frequencies find H(s) of analog filter
	3) Select Sampling rate of digital filter. F&c/sample
	1) Sabetitute
	0 0

CHEBYSHEV FILTERS
Cheby sher low pass filter has a magnitude
Che by sher low pass filter has a magnitude response $1 + (j-1) = A$
A - filter gain E - constant
sic < 3-dB out off freq
Chebyshev polynomical of I kind of Nth order CNCE) is given by
$C_N(x) = \begin{cases} \cos(N\cos^2x), & \text{for } x \leq 1 \\ \cos(N\cos^2x), & \text{for } x \geq 1 \end{cases}$
Magnitude response of the chabysher filter
is shown in fig. The magnitude response has equiripple pass band and maximally flat stop band.
By increasing order of filter N, chetysher response approximates ideal response.
phase response of chebysher filter is more nonlinear than butterworth filter
for a given filter length 'N'.
LPF Specifications
$S_1 \leq H(e^{j\omega}) \leq 1 0 \leq \omega \leq \omega_0,$

Substitute egn
$$\bigcirc$$
 in \bigcirc and if $A=1$, we get

$$\delta_1^2 = \frac{1}{1+\epsilon^2} \sum_{n=1}^{\infty} \frac{(n-1)^n}{2n} = 0$$

$$\frac{1}{1+\epsilon^2} \sum_{n=1}^{\infty} \frac{(n-1)^n}{2n} = 0$$
Assume $A = -2$.

$$C_N(\frac{-n}{-n}) = C_N(1) = 1$$

$$C_N(\frac{-n}{-n}) = C_N(\frac{-n}{-n}) = C_N(\frac{-n}{-n}$$

Parameter
$$y_{N}$$
 is given by

$$y_{N} = \frac{1}{2} \begin{cases} y_{2} + 1 + \frac{1}{2} \\ y_{2} + 1 + \frac{1}{2} \end{cases} = \begin{cases} y_{2} + 1 + \frac{1}{2} \\ y_{2} + 1 + \frac{1}{2} \end{cases}$$

Parameter y_{N} can be obtained from

$$\frac{A}{A} = \frac{y_{2}}{11} \frac{y_{2}}{y_{2}} = \frac{y_{2}}{y_{2}}$$

For y_{2} even

$$A = \frac{y_{2}}{11} \frac{y_{2}}{y_{2}} = \frac{y_{2}}{y_{2}}$$

Given:
$$8_1 = 0.707$$
 $W_1 = 0.27T$
 $8_2 = 0.1$ $W_2 = 0.5 TT$

Step 1: Determination of analog filter's digital frequencies

 $C = -1 = \frac{2}{2} tan \frac{10}{2}$
 $C = \frac{2}{2} tan \frac{10}{2} = \frac{2}{2} tan \frac{10}{2} = 0.6498$
 $C = \frac{2}{2} tan \frac{10}{2} = \frac{2}{2} tan \frac{10.5 TT}{2} = \frac{2}{2$

To fird b1, C1000 Ne reed y, parameter

$$y_N = \frac{1}{2} \left\{ \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] \right\}$$
 $= \frac{1}{2} \left\{ \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] \right\}$
 $= \frac{1}{2} \left\{ \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] \right\}$
 $= \frac{1}{2} \left\{ \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] \right\}$
 $= \frac{1}{2} \left\{ \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] \right\}$
 $= \frac{1}{2} \left\{ \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] \right\}$
 $= \frac{1}{2} \left\{ \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] \right\}$
 $= \frac{1}{2} \left\{ \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] \right\}$
 $= \frac{1}{2} \left\{ \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] \right\}$
 $= \frac{1}{2} \left\{ \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] \right\}$
 $= \frac{1}{2} \left\{ \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k} \right] \right\}$
 $= \frac{1}{2} \left\{ \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k^2} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k^2} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k^2} \right] \right\}$
 $= \frac{1}{2} \left\{ \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k^2} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k^2} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k^2} \right] - \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k^2} \right] \right\}$
 $= \frac{1}{2} \left\{ \left[\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k^2} \right] - \left(\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k^2} \right) - \left(\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k^2} + 1 + \frac{1}{k^2} \right) - \left(\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k^2} + \frac{1}{k^2} \right) - \left(\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k^2} + \frac{1}{k^2} \right) - \left(\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k^2} + \frac{1}{k^2} \right) - \left(\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k^2} + \frac{1}{k^2} + \frac{1}{k^2} \right) - \left(\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k^2} + \frac{1}{k^2} \right) - \left(\sqrt{\frac{1}{k^2} + 1} + \frac{1}{k^2} + \frac{1}{k^2} + \frac{1}{k^$

Oystem function.
$$H(S) \pm 0.5$$
 (0.6498).

 $g^2 + 0.6435 + 6.5498$).

 $+0.707 + 6.6498^2$

Heparity

Abstraction of $H(E)$
 $2 + 0.4185 + 0.2985$

Using BLT $H(E) = H(S) / 8 = 2 + 1 - 21 / 1 + 21$
 $2 + 0.418 + 1 - 21 / 1 + 21 / 1 + 21$

Ans $H(E) = 0.00411 + 21 / 1 + 21$