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UNIT 4 
 

C++ Inheritance 

 

What is Inheritance? 

 
Inheritance is the process by which new classes called derived classes are created from 
existing classes called base classes. The derived classes have all the features of the 
base class and the programmer can choose to add new features specific to the newly 
created derived class. 

 

For example, a programmer can create a base class named fruit and define derived 
classes as mango, orange, banana, etc. Each of these derived classes, (mango, orange, 
banana, etc.) has all the features of the base class (fruit) with additional attributes or 
features specific to these newly created derived classes. Mango would have its own 
defined features, orange would have its own defined features, banana would have its own 
defined features, etc. 

 

This concept of Inheritance leads to the concept of polymorphism. 

 

Features or Advantages of Inheritance 
 

�
 Reusability: 

 
Inheritance helps the code to be reused in many situations. The base class is defined 
and once it is compiled, it need not be reworked. Using the concept of inheritance, 
the programmer can create as many derived classes from the base class as needed 
while adding specific features to each derived class as needed. 

 

�
 Saves Time and Effort: 

 
The above concept of reusability achieved by inheritance saves the programmer 
time and effort, because the main code written can be reused in various situations as 
needed.  
� Increases Program Structure which results in greater reliability. 

  

� Polymorphism 
 

 

General Format for implementing the concept of Inheritance: 

 
class derived_classname: access specifier baseclassname 

 
For example, if the base class is exforsys and the derived class is sample it is specified as: 
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class sample: public exforsys 
 
 
The above makes sample have access to both public and protected variables of base 
class exforsys. Reminder about public, private and protected access specifiers: 

 

• If a member or variables defined in a class is private, then they are accessible by 
members of the same class only and cannot be accessed from outside the class.   

.  

• Public members and variables are accessible from outside the class.  

.  
 

• Protected access specifier is a stage between private and public. If a member 
functions or variables defined in a class are protected, then they cannot be 
accessed from outside the class but can be accessed from the derived class.   

Inheritance Example: 

 

class exforsys 

{  
private: 
int x; 
 

public:  
exforsys(void) { x=0; 
} void f(int n1)  
{ 

x= n1*5;  
} 

 
void output(void) { cout<<x;  
}  
}; 

 
class sample: public exforsys  
{ 

public:  
sample(void) { s1=0; } 

 
void f1(int n1) 

{  
s1=n1*10; 

} 

 
void output(void)  
{ 
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exforsys::output(); 
cout << s1;  
} 

 
private: 
int s1; 
}; 

 
int main(void) 

{  
sample s; 
s.f(10); 
s.output(); 
s.f1(20); 
s.output();  
} 

 

The output of the above program is 

 
50  
200 

 

In the above example, the derived class is sample and the base class is exforsys. The 
derived class defined above has access to all public and private variables. Derived classes 
cannot have access to base class constructors and destructors. The derived class would be 
able to add new member functions, or variables, or new constructors or new destructors. 
In the above example, the derived class sample has new member function f1( ) added in 
it. The line: 
 
sample s; 
 
creates a derived class object named as s. When this is created, space is allocated for 
the data members inherited from the base class exforsys and space is additionally 
allocated for the data members defined in the derived class sample. 

 
The base class constructor exforsys is used to initialize the base class data members 
and the derived class constructor sample is used to initialize the data members defined 
in derived class. 

 
The access specifier specified in the line: 

class sample: public exforsys 
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Public indicates that the public data members which are inherited from the base class by 
the derived class sample remains public in the derived class. 

 

A derived class inherits every member of a base class except: 

 

¬ its constructor and its destructor   

¬ its friends  

¬ its operator=() members  
 

Types of Inheritance 

 
There are five different inheritances supported in C++: 

 

� Simple / Single  

� Multilevel   
� Hierarchical  

� Multiple   
� Hybrid  

 

Accessibility modes and 

Inheritance 

 
We can use the following chart for seeing the accessibility of the members in the 
Base class (first class) and derived class (second class). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here X indicates that the members are not inherited, i.e. they are not accessible in the 
derived class. 

 

Multiple Inheritance 

 
We can derive a class from any number of base classes. Deriving a class from more 
than one direct base class is called multiple inheritance.  
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In the following example, classes A, B, and C are direct base classes for the derived class 

X: 

 
class A { /* ... */ }; 

class B { /* ... */ }; 
class C { /* ... */ }; 
class X : public A, private B, public C { /* ... */ }; 

 
The following inheritance graph describes the inheritance relationships of the above 
example. An arrow points to the direct base class of the class at the tail of the arrow: 
 
 
 
 
 
 
 
 
 
 

 
The order of derivation is relevant only to determine the order of default initialization 
by constructors and cleanup by destructors. 

 
A direct base class cannot appear in the base list of a derived class more than once: 

 
class B1 { /* ... */ }; // direct base class class D : 
public B1, private B1 { /* ... */ }; // error 

 
However, a derived class can inherit an indirect base class more than once, as shown 
in the following example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
class L { /* ... */ }; // indirect base class  
class B2 : public L { /* ... */ };  
class B3 : public L { /* ... */ }; 
class D : public B2, public B3 { /* ... */ }; // valid 

 

In the above example, class D inherits the indirect base class L once through class B2 and 
once through class B3. However, this may lead to ambiguities because two subobjects of 
class L exist, and both are accessible through class D. You can avoid this ambiguity by 
referring to class L using a qualified class name. For example: 

 

OEC / IT / CS2203-OOPS / QB 
 



6 

 

B2::L 

 

or 

 
B3::L. 

 

we can also avoid this ambiguity by using the base specifier virtual to declare a base class. 

 

Virtual Base Classes 

 
Suppose you have two derived classes B and C that have a common base class A, and you 
also have another class D that inherits from B and C. You can declare the base class A as 
virtual to ensure that B and C share the same subobject of A. 

 

In the following example, an object of class D has two distinct subobjects of class L, one 
through class B1 and another through class B2. You can use the keyword virtual in front of 
the base class specifiers in the base lists of classes B1 and B2 to indicate that only one 
subobject of type L, shared by class B1 and class B2, exists. 

 

For example: 
 
 
 
 
 
 
 
 
 
 
 
 

 
class L { /* ... */ }; // indirect base class 
class B1 : virtual public L { /* ... */ }; 
class B2 : virtual public L { /* ... */ };  
class D : public B1, public B2 { /* ... */ }; // valid 

 
Using the keyword virtual in this example ensures that an object of class D inherits 
only one subobject of class L. 

 

A derived class can have both virtual and nonvirtual base classes. For example: 
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class V { /* ... */ };  
class B1 : virtual public V { /* ... */ }; 
class B2 : virtual public V { /* ... */ }; 
class B3 : public V { /* ... */ };  
class X : public B1, public B2, public B3 { /* ... 
*/ }; 

 
In the above example, class X
classes B1 and B2 and one through class

 

Abstract Classes 

 
An abstract class is a class that is designed to be specifically used as a base class. An 
abstract class contains at least one pure virtual function. You can declare a pure virtual 
function by using a pure specifier (
the class declaration. 

 

The following is an example of an abstract class:

 
class AB { 
public:  
virtual void f() = 0; 
}; 

 
Function AB::f is a pure virtual function. A function declaration cannot have both a pure 
specifier and a definition. For example, the compiler will not allow the following:

 

class A {  
virtual void g() { } = 
0; }; 

 
You cannot use an abstract class as a parameter type, a function return type, or the type of 
an explicit conversion, nor can you declare an object of an abstract class. You can, 
however, declare pointers and references to an abstract class. The following example 
demonstrates this: 

 

class A {  
virtual void f() = 0; 
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class B1 : virtual public V { /* ... */ }; 
class B2 : virtual public V { /* ... */ }; 

class X : public B1, public B2, public B3 { /* ... 

X has two subobjects of class V, one that is shared by 
and one through class B3. 

An abstract class is a class that is designed to be specifically used as a base class. An 
ins at least one pure virtual function. You can declare a pure virtual 

function by using a pure specifier (= 0) in the declaration of a virtual member function in 

The following is an example of an abstract class: 

is a pure virtual function. A function declaration cannot have both a pure 
specifier and a definition. For example, the compiler will not allow the following:

use an abstract class as a parameter type, a function return type, or the type of 
an explicit conversion, nor can you declare an object of an abstract class. You can, 
however, declare pointers and references to an abstract class. The following example 
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An abstract class is a class that is designed to be specifically used as a base class. An 
ins at least one pure virtual function. You can declare a pure virtual 

) in the declaration of a virtual member function in 

is a pure virtual function. A function declaration cannot have both a pure 
specifier and a definition. For example, the compiler will not allow the following: 

use an abstract class as a parameter type, a function return type, or the type of 
an explicit conversion, nor can you declare an object of an abstract class. You can, 
however, declare pointers and references to an abstract class. The following example 
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}; 

 
class A {  
virtual void f() { 
} }; 

 
� Error:  

� Class A is an abstract class   
� A g();  

 
� Error:  

� Class A is an abstract class   
� void h(A);  

A& i(A&); 

 

int main() {  
� Error:  

� Class A is an abstract class   
� A a;  

 
A* pa; 

B b;  

 

// Error:   
// Class A is an abstract class  

// static_cast<A>(b);   
} 

 
Class A is an abstract class. The compiler would not allow the function declarations A g() 
or void h(A), declaration of object a, nor the static cast of b to type A. 

 
Virtual member functions are inherited. A class derived from an abstract base class will 
also be abstract unless you override each pure virtual function in the derived class. 

 

For example: 

 
class AB { 
public:  

virtual void f() = 0; 
}; 

 
class D2 : public AB { 

void g();  
}; 

 
int main() {  
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D2 d; 

} 

 
The compiler will not allow the declaration of object d because D2 is an abstract class; it 
inherited the pure virtual function f()from AB. The compiler will allow the declaration of 
object d if you define function D2::g(). 

 
Note that you can derive an abstract class from a nonabstract class, and you can override 
a non-pure virtual function with a pure virtual function. 

 
You can call member functions from a constructor or destructor of an abstract class. 
However, the results of calling (directly or indirectly) a pure virtual function from its 
constructor are undefined. The following example demonstrates this: 

 
clss A { 

A() { 
direct();  
indirect(); 

}  
virtual void direct() = 0;  
virtual void indirect() { direct(); 

} }; 

 
The default constructor of A calls the pure virtual function direct() both directly 
and indirectly (through indirect()). 

 
The compiler issues a warning for the direct call to the pure virtual function, but not 
for the indirect call. 

 

Polymorphism 
 

Polymorphism is the phenomenon where the same message sent to two different 
objects produces two different set of actions. Polymorphism is broadly divided into two 
parts: 
 

• Static polymorphism – exhibited by overloaded functions.  

• Dynamic polymorphism – exhibited by using late binding.  
 

Static Polymorphism 
 

Static polymorphism refers to an entity existing in different physical forms 

simultaneously. Static polymorphism involves binding of functions based on the number, 
type, and sequence of arguments. The various types of parameters are specified in the 
function declaration, and therefore the function can be bound to calls at compile time. 
This form of association is called early binding. The term early binding stems from the 
fact that when the program is executed, the calls are already bound to the appropriate 
functions. 

 

OEC / IT / CS2203-OOPS / QB 
 



10 

 

 
The resolution of a function call is based on number, type, and sequence of arguments 
declared for each form of the function. Consider the following function declaration: 
 

void add(int , int); 
void add(float, float);  

When the add() function is invoked, the parameters passed to it will determine which 
version of the function will be executed. This resolution is done at compile time. 
 

Dynamic Polymorphism 
 
Dynamic polymorphism refers to an entity changing its form depending on the 
circumstances. A function is said to exhibit dynamic polymorphism when it exists in 
more than one form, and calls to its various forms are resolved dynamically when the 
program is executed. The term late binding refers to the resolution of the functions at run-
time instead of compile time. This feature increases the flexibility of the program by 
allowing the appropriate method to be invoked, depending on the context. 
 

Static Vs Dynamic Polymorphism 
 

� Static polymorphism is considered more efficient, and dynamic polymorphism more flexible. 
 

 

� Statically bound methods are those methods that are bound to their calls at 
compile time. Dynamic function calls are bound to the functions during run-time. 
This involves the additional step of searching the functions during run-time. On 
the other hand, no run-time search is required for statically bound functions. 

  

� As applications are becoming larger and more complicated, the need for 
flexibility is increasing rapidly. Most users have to periodically upgrade their 
software, and this could become a very tedious task if static polymorphism is 
applied. This is because any change in requirements requires a major 
modification in the code. In the case of dynamic binding, the function calls are 
resolved at run-time, thereby giving the user the flexibility to alter the call 
without having to modify the code. 

  

� To the programmer, efficiency and performance would probably be a primary 
concern, but to the user, flexibility or maintainability may be much more 
important. The decision is thus a trade-off between efficiency and flexibility. 

 

 

Introduction To Virtual Functions 

 

Polymorphism, one of the three main attributes of an OOP language, denotes a process by 
which different implementations of a function can be accessed by the use of a single 
name. Polymorphism also means one  interface, multiple methods. 

 
C++ supports polymorphism both at run-time and at compile-time. The use of 
overloaded functions is an example of compile-time polymorphism. Run-time 
polymorphism can be achieved by the use of both derived classes and virtual functions. 
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Pointers to Derived Types 

 
We know that pointer of one type may not point to an object of another type. You‘ll now 
learn about the one exception to this general rule: a pointer to an object of a base class 
can also point to any object derived from that base class. 

 
Similarly, a reference to a base class can also reference any object derived from the 
original base class. In other words, a base class reference parameter can receive an 
object of types derived from the base class, as well as objects within the base class itself. 

 

Virtual Functions 

 
How does C++ handle these multiple versions of a function? Based on the parameters 
being passed, the program determines at run-time which version of the virtual function 
should be the recipient of the reference. It is the type of object being pointed to, not the 
type of pointer, that determines which version of the virtual function will be executed! 

 

To make a function virtual, the virtual  keyword must precede the function declaration in 
the base class. The redefinition of the function in any derived class does not require a 
second use of the virtual keyword. Have a look at the following sample program to see 
how this works: 

 
#include <iostream.h> 
using namespace std; 
class bclass {  
public:  
virtual void whichone() 
{ cout << bclass\n; 

}  
};  
class dclass1 : public bclass 
{ public:  
void whichone() { 
cout << dclass1\n; 

}  
};  
class dclass2 : public bclass 
{ public:  
void whichone() { 
cout << dclass2\n; 

} 

};  
int main() 

{  
bclass Obclass; 
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bclass *p; dclass1 
Odclass1; dclass2 
Odclass2;  
� point to bclass 
p = &Obclass;   
� access bclass‘s 
whichone() p->whichone();  
� point to dclass1   
p = &Odclass1;  
// access dclass1‘s 
whichone() p->whichone();   
// point to dclass2   
p = &Odclass2;  
// access dclass2‘s whichone() 
p->whichone(); 
return 0;  
} 

 
The output from this program looks like this: 

 
bclass 
dclass1 
dclass2 

 
Notice how the type of the object being pointed to, not the type of the pointer 
itself, determines which version of the virtual whichone() function is executed. 

 

Virtual Functions and Inheritance 

 
. Virtual functions are inherited intact by all subsequently derived classes, even if the 
function is not redefined within the derived class. So, if a pointer to an object of a derived 
class type calls a specific function, the version found in its base class will be invoked. 
Look at the modification of the above program. Notice that the program does not define 
the whichone() function in d class2. 

 
#include <iostream.h> 
using namespace std; 
class bclass { 
public:  
virtual void whichone() 
{ cout << bclass\n;  

} 

};  
class dclass1 : public bclass 
{ public: 
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void whichone() { 
cout << dclass1\n;  

} 

};  
class dclass2 : public bclass 
{ };  
int main() 

{  
bclass Obclass; 
bclass *p; dclass1 
Odclass1; dclass2 
Odclass2; p = 
&Obclass; p-
>whichone();  
p = &Odclass1; 
p->whichone(); 
p = &Odclass2;  
// accesses dclass1‘s 
function p->whichone(); 
return 0;  
} 

 
The output from this program looks like this: 

 
bclass 
dclass1 
bclass 
 

Rtti Constituents 

 

The operators typeid and dynamic_cast<> offer two complementary forms of accessing 
the runtime type information of their operands. The operand‘s runtime type 
information itself is stored in a type_info object. 

 

It‘s important to realize that RTTI is applicable solely to polymorphic objects; a 
class must have at least one virtual-member function in order to have RTTI support 
for its objects. 

 

std::type_info 

 
For every distinct type, C++ instantiates a corresponding std::type_info (defined in 
<typeinfo>) object. The interface is as follows: 

 
namespace std { 
class type_info 
{  

OEC / IT / CS2203-OOPS / QB 
 



14 

 

public:  
virtual ~type_info(); //type_info can serve as a base 
class // enable comparison  
bool operator==(const type_info& rhs ) const; 
// return !( *this == rhs) 
bool operator!=(const type_info& rhs ) const;  
bool before(const type_info& rhs ) const; // ordering 
//return a C-string containing the type‘s name  
const char* name() const; 
private:  
//objects of this type cannot be copied 
type_info(const type_info& rhs ); 
type_info& operator=(const type_info& 
rhs); }; //type_info  
} 

 

All objects of the same class share a single type_info object. The most widely used 
member functions of type_info are name() and operator==. But before you can invoke 
these member functions, you have to access the type_info object itself. How? Operator 
typeid takes either an object or a type name as its argument and returns a matching 
type_info object. The dynamic type of an object can be examined as follows: 

 

OnRightClick (File & file) 

{  
if ( typeid( file) == typeid( TextFile ) ) 

{  
//received a TextFile object; printing should be enabled 

}  
else 

{  
//not a TextFile object; printing disabled 

}  
} 

 
To understand how it works, look at the highlighted source line: 

 
if ( typeid( file) == typeid( TextFile ) ). 

 

The if statement tests whether the dynamic type of file is TextFile (the static type of file 
is File, of course). The leftmost expression, typeid(file), returns a type_info object that 
holds the necessary runtime type information associated with the object file. The 
rightmost expression, typeid(TextFile), returns the type information associated with class 
TextFile. (When typeid is applied to a class name rather than an object, it always returns 
a type_info object that corresponds to that class name.) 
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As shown earlier, type_info overloads the operator ==. Therefore, the type_info object 
returned by the leftmost typeid expression is compared to the type_info object returned 
by the rightmost typeid expression. If file is an instance of TextFile, the if statement 
evaluates to true. In that case, OnRightClick should display an additional option in the 
menu: print(). On the other hand, if file is not a TextFile, the if statement evaluates to 
false, and the print() option is disabled. 

 

dynamic_cast<> 

 

OnRightClick() doesn‘t really need to know whether file is an instance of class TextFile 
(or of any other class, for that matter). Rather, all it needs to know is whether file is-a 
TextFile. An object is-a TextFile if it‘s an instance of class TextFile or any class derived 
from it. For this purpose, you use the operator dynamic_cast<>. dynamic_cast<> takes 
two arguments: a type name, and an object that dynamic_cast<> attempts to cast at 
runtime. For example: 

 
//attempt to cast file to a reference 
to //an object of type TextFile 
dynamic_cast <TextFile &> (file); 

 
If the attempted cast succeeds, the second argument is-a TextFile. But how do you know 
whether dynamic_cast<> was successful? 

 
There are two flavors of dynamic_cast<>; one uses pointers and the other uses 
references. Accordingly, dynamic_cast<> returns a pointer or a reference of the desired 
type when it succeeds. When dynamic_cast<> cannot perform the cast, it returns NULL; 
or, in the case of a reference, it throws an exception of type std::bad_cast: 

 
TextFile * pTest = dynamic_cast <TextFile 
*> (&file); //attempt to cast  
//file address to a pointer to TextFile 

if (pTest) //dynamic_cast succeeded, file is-a TextFile  
{ 

//use pTest  
} 

else // file is not a TextFile; pTest has a NULL value  
{ 

} 

 
Remember to place a reference dynamic_cast<> expression inside a try block and 
include a suitable catch statement to handle std::bad_cast exceptions. 

 

Now you can revise OnRightClick() to handle HTMLFile objects properly: 

 
OnRightClick (File & file)  
{  
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try 

{  
TextFile temp = dynamic_cast<TextFile&> 
(file); //display options, including print  
switch (message) 

{  
case m_open:  
temp.open(); //either TextFile::open or HTMLFile::open 
break; 
case m_print:  
temp.print();//either TextFile::print or HTMLFile::print 
break;  
}//switch 

}//try  
catch (std::bad_cast& noTextFile) 

{ 

// treat file as a BinaryFile; excludeprint 
}  

}// OnRightClick 

 
The revised version of OnRightClick() handles an object of type HTMLFile properly. 
When the user clicks the open option in the file manager application, OnRightClick() 
invokes the member function open() of its argument. Likewise, when it detects that its 
argument is a TextFile, it displays a print option. 

 

This hypothetical file manager example is a bit contrived; with the use of templates and 
more sophisticated design, it could have been implemented without dynamic_cast. Yet 
dynamic type casts have other valid uses in C++, as I‘ll show next. 

 

Cross Casts 

 
A cross cast converts a multiply-inherited object to one of its secondary base classes. To 
see what a cross cast does, consider the following class hierarchy: 

 

struct A 

{  
int i;  
virtual ~A () {} //enforce polymorphism; needed for 
dynamic_cast }; 
struct B  
{  
bool b; 
}; 

 

struct D: public A, public B 

{  
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int k;  
D() { b = true; i = k = 0; 
} }; 

 

A *pa = new D;  
B *pb = dynamic_cast<B*> pa; //cross cast; access the second 
base //of a multiply-derived object 

 

The static type of pa is A *, whereas its dynamic type is D *. A simple static_cast<> 
cannot convert a pointer to A into a pointer to B, because A and B are unrelated. Don‘t 
even think of a brute force cast. It will cause disastrous results at runtime because the 
compiler will simply assign pa to pb; whereas the B sub-object is located at a different 
address within D than the A sub-object. To perform the cross cast properly, the value of 
pb has to be calculated at runtime. After all, the cross cast can be done in a source file 
that doesn‘t even know that class D exists! The following listing demonstrates why a 
dynamic cast, rather than a compile-time cast, is required in this case: 

 

A *pa = new D;  
// disastrous; pb points to the sub-object A within d 

B pb = (B) pa; bool bb = pb->b; // bb has an undefined value  
� pb was not properly  

� adjusted; pa and pb are identical  

cout<< pa:  << pa <<  pb: <<pb <<endl;  
pb = dynamic_cast<B*> (pa); //cross cast; adjust pb 
correctly bb= pb->b; //OK, bb is true 
� OK, pb was properly adjusted;   
� pa and pb have distinct values  

cout<< pa: << pa <<  pb:  << pb <<endl; 

 
The code displays two lines of output; the first shows that the memory addresses of pa 
and pb are identical. The second line shows that the memory addresses of pa and pb 
are indeed different after performing a dynamic cast as needed. 

 

Downcasting from a Virtual Base 

 
A downcast is a cast from a base to a derived object. Before the advent of RTTI, 
downcasts were regarded as bad programming practice and notoriously unsafe. 
dynamic_cast<> enables you to use safe and simple downcasts from a virtual base to its 
derived object. Look at the following example: 

 

struct V  
{  
virtual ~V (){} //ensure polymorphism 
}; 
struct A: virtual V {}; 
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struct B: virtual V {}; struct 
D: A, B {}; 

 
#include <iostream> using 
namespace std; int main()  
{ 

V *pv = new D;  
A* pa = dynamic_cast<A*> (pv); // downcast  
cout<< pv: << pv <<  pa:  << pa <<endl; // OK, pv and pa have //different 
addresses 
} 

 

V is a virtual base for classes A and B. D is multiply-inherited from A and B. Inside main(), pv 
is declared as a V * and its dynamic type is D *. Here again, as in the cross-cast example, the 
dynamic type of pv is needed in order to properly downcast it to a pointer to A. A static_cast<> 
would be rejected by the compiler in this case, as the memory layout of a virtual sub-object 
might be different from that of a non-virtual sub-object. Consequently, it‘s impossible to 
calculate at compile time the address of the sub-object A within the object pointed to by pv. As 
the output of the program shows, pv and pa indeed point to different memory addresses. 
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