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Chapter 18
Divide-and-Conquer Algorithms

A divide-and-conquer algorithm

Derives the output directly, for small instances●   

Divides large instances to smaller ones, and (recursively) applies the algorithm on the smaller
instances.

●   

Combines the solutions for the subinstances, to produce a solution for the original instance.●   

18.1 Merge Sort

Sets of cardinality greater than one are decomposed into two equal subsets, the algorithm is recursively
invoked on the subsets, and the returned ordered subsets are merged to provide a sorted variant of the
original set.

The time complexity of the algorithm satisfies the recurrence equation

whose solution is T(n) = O(n log n).

18.2 Quick Sort

Sets of cardinality greater than one are partitioned into two subsets, and then the algorithm is recursively
invoked on the subsets. The partitioning uses a key from the set as a pivot. Values smaller than the pivot
are sent to one subset, and values greater than the pivot are sent to the other subset.

For randomly chosen pivots, the expected running time of the algorithm satisfies the recurrence equation

whose solution is T(n) = O(n log n). The worst case time complexity of the algorithm is O(n2).

18.3 Tiling with L-Grouped Tiles

The problem is to tile a board of size 2k × 2k with one single tile and 22k - 1 L-shaped groups of 3 tiles. A
divide-and-conquer approach can recursively divide the board into four, and place a L-grouped set of 3
tiles in the center at the parts that have no extra tile.

Divide-and-Conquer Algorithms
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18.4 Closest Pair

Given a set of n points (xi, yi) the problem asks what is the distance between the two closest points. A

brute force approach in which the distances for all the pairs are measured takes O(n2) time.

A divide-and-conquer algorithm can sort the points along the x-axis, partition the region into two parts
Rleft and Rright having equal number of points, recursively apply the algorithm on the sub-regions, and
then derive the minimal distance in the original region.

The closest pair resides in the left region, the right region, or across the borderline. The last case needs to
deal only with points at distance  = min( left, right) from the dividing line, where right and right are the
minimal distances for the left and right regions, respectively.

The points in the region around the boundary line are sorted along the y coordinate, and processed in that
order. The processing consists of comparing each of these points with points that are ahead at most  in
their y coordinate. Since a window of size  × 2  can contain at most 6 points, at most five distances
need to be evaluated for each of these points.

The sorting of the points along the x and y coordinates can be done before applying the recursive
divide-and-conquer algorithm; they require O(n log n) time.

Divide-and-Conquer Algorithms
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The processing of the points along the boundary line takes O(n) time. Hence, the recurrence equation for
the time complexity of the algorithm:

The solution of the equation is T(n) = O(n log n).

18.5 Strassen�s Matrix Multiplication

Given: Two N by N matrices A and B.

Problem: Compute C = A × B

Brute Force

for i:= 1 to N do 
  for j:=1 to N do 
     C[i,j] := 0; 
     for k := 1 to N do 
        C[i,j] := C[i,j] + A[i,k] * B[k,j] 

O(N3) multiplications

Divide and Conquer

From

Divide-and-Conquer Algorithms
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T(n) = O(nlog 7) = O(n2.81).

Best known upper bound is n2.376

18.6 Assignment #8 (due We, Nov 17)

Show that our greedy algorithms for the Egyptian fractions and vertex cover problems need not
provide optimal answers.

An optimal vertex cover is one which uses a minimal number of vertices, and an optimal Egyptian
number is one which uses a minimal number of terms.

1.  

Assume the greedy algorithm for the vertex cover problem uses a heap-based priority queue for
selecting a node at each stage. Consider the following graph.

Provide an initial priority queue for the algorithm on the above graph.i.  

Show all the the transformations the priority queue goes through, in response to the selection
of the first node by the greedy algorithm.

ii.  

Find the time and space complexities of the algorithm on arbitrary graphs G = {V, E}.iii.  

2.  

Find out what is Huffman�s compression algorithm, and explain what makes it a greedy algorithm.3.  

Provide a divide-and-conquer algorithm for determining the largest and second largest values in a
given unordered set of numbers. Provide a recurrence equation expressing the time complexity of
the algorithm, and derive it�s solution.

4.  
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NAME

1-4 CHARACTERS CODE(if you want your final grade posted)

 
CIS 680: Final Exam
 
1:50 minutes
Open Notes, Open Books
The exam consists of five problems
Answers not appearing in designated spaces WILL NOT be graded

Problem #1 (10 points)

Add the keys 6.1, 6.2, 6.3, 6.4, and 6.5 to the following B-tree of degree 3, and show all the
intermediate trees and the final tree.

●   

Problem #2 (10 points)

Describe an algorithm to determine whether a directed graph has exactly one topological
order.

a.  

What is the time complexity of your algorithm?b.  

●   

Problem #3 (10 points) Show the linked lists of the union-find algorithm, at all the instances of
applying Kruskal�s algorithm on the following graph.

●   

Problem #4 (10 points) The 3-vertex cover problem for graphs asks to assign a vertex cover of
cardinality three to the given graphs. Assume an undirected graph whose edges are (1,2), (1,4),
(1,5), (2,3), (2,4), (3,4), (4,5).

Provide a spanning tree of a solution space, for the 3-vertex cover problem on the givena.  

●   

sample final exam
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graph.

What vertex cover the backtracking algorithm provides for the above tree?b.  

What vertex cover the FIFO branch-and-bound algorithm provides on the above tree?c.  

Problem #5 (10 points) Consider the following recursive function.

function value(i) { 
   if (i >= n) return 0; 
   return 1 + max( value(2*i+1), value(2*i+2), 
                   value(4*i+3) + value(4*i+4) + value(4*i+5), 
                   value(4*i+5) + value(4*i+6)                 ); 
} 

Translate the code into an iterative bottom-up dynamic programming algorithm.

●   

sample final exam
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NAME

 
CIS 680: Mid Term Exam
 
Mo, October 25, 1999, 50 minutes
Open Notes, Open Books
The exam consists of seven problems
Answers not appearing in designated spaces WILL NOT be graded

Problem #1 (10 points) What are the time and space complexities of the following code segments.

(a)

for i := 1 to n do 
   for j := 1 to n2 do 
     for k := 1 to n3do 
       a[i,j,k] := 0 

(b)

function comp(n) 
{ 
  if n < 2 then return 1 
  return comp( n / 2 ) 
} 

●   

Problem #2 (10 points) Assume n is an integer value divisible by 6 and larger than 1000.

(a)

Solve the following recurrence equation exactly.

T(n) =  (b)

Does the solution to the following recurrence equation equal to, smaller than, or greater than the
solution to the equation of (a).

T(n) =  ___________

●   

Problem #3 (10 points) Which of the following statements is correct?

Each AVL tree is also a balanced treea.  

Each heap tree is also a height-biased leftist treeb.  

The ratio between the longest and shortest paths from a root to a leaf in a red-black tree is at
most 2.

c.  

Each height-biased leftist tree is also a binary search tree.d.  

An AVL tree with more than 3 keys can�t be a binary search tree.e.  

●   

Problem #4 (10 points)●   

midterm exam
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Let the height of a tree be the number of nodes in the longest path from the root to the
leaves. Provide a recursive algorithm that when given a binary tree determines the height of
the tree.

a.  

What is the time and space complexities of your algorithm?b.  

What is the time and space complexities of your algorithm, if only AVL trees are allowed?c.  

What is the time and space complexities of your algorithm, if only height-biased leftist trees
are involved?

d.  

Problem #5 (10 points)

Consider the priority queue represented by the given height-biased leftist tree. Show the modified
tree under each of the following operations. (Note: The two operations are independent. Each of

them starts from the above tree.) 

________________________________________

Insertion of the key 7.

Deletion of a key.

●   

Problem #6 (10 points) Consider the following AVL tree.

Show the modified tree under each of the following operations. (Note: The two operations are
independent. Each of them starts from the above tree.)

________________________________________

Deletion of the key 4

Insertion of the key 16.

●   

Problem #7 (10 points)

Consider the following red-black tree (the red nodes are double circled). What kind of discrepancy

●   

midterm exam
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(Lb0, RRb, etc.) each of the following operations create. (Note: The different operations are
independent. Each of them starts from the above tree.)

Addition of the key 11.a.  

Addition of the key 13.b.  

Deletion of the key 20.c.  

Deletion of the key 12.d.  

Deletion of the subtree rooted at 4.e.  

grades
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1-4 CHARACTERS CODE(if you want your final grade posted)

 
CIS 680: Final Exam
 
1:50 minutes
Open Notes, Open Books
The exam consists of five problems
Answers not appearing in designated spaces WILL NOT be graded

Problem #1 (10 points) In Kruskal�s algorithm, the union-find algorithm merges the longer linked
lists at the end of the shorter linked lists. The algorithm requires O(|V | log |V |) time. What
contribution the union-find algorithm provides to the time complexity of Kruskel�s algorithm, if
the union operation merges the lists in arbitrary manner, without taking into account their lengths
or other ranks.

●   

Problem #2 (10 points) Consider the closest pair algorithm. How many distances the algorithm
computes, in each of the following cases.

The points are at locations (0,0), (1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0).a.  

The points are at locations (0,0), (1,0), (2,0), (3,0), (0,1), (1,1), (2,1), (3,1).b.  

●   

Problem #3 (10 points) Consider the Graham�s Scan algorithm for solving the Convex Hull
problem. For each of the following cases, draw a set of 8 points satisfying the specified condition.

The algorithm constructs the convex hull without ever backtracking.a.  

The algorithm constructs a convex hull containing a minimal number of boundary pointsb.  

The algorithm constructs a convex hull containing 5 boundary nodes, and doesn�t visit the
omitted nodes consecutively.

c.  

●   

Problem #4 (10 points) For each of the following problems, provide a tree generator of a solution
space.

The assignment problem assumes n jobs to be assigned to n workers, and a function c(i, j)
which specifies the cost of assigning job i to worker j. The problem is interested in finding
an assignment having a minimal cost.

a.  

The partition problem assumes a set of items, and a function v(i) assigning to each item a
value. The problem asks whether the set can be partitioned into two subsets having the same
total value.

b.  

●   

Problem #5 (10 points) The number of ways of choosing k items from a set of n items is
represented by the following recurrence relation.

C(n, k) = C(n - 1, k - 1) + C(n - 1, k)

Provide a dynamic programming algorithm for calculating C(n, k).a.  

What calculations the dynamic programming algorithm saves in computing C(5, 2)b.  

●   

course grades

final exam
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C iawa37.  
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C+ cn38.  

C+ dive39.  

C+ tuba40.  

C- 806741.  

C- bass42.  

C- rgb43.  

C- soh44.  

C- xxxx45.  

C- 132346.  
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We choose to count just the comparison operation for keys. 
 
We can take the instance characteristics to be the size of our data 
base. 
 
Best time for successful search:        1 
Best time for unsuccessful search:      n 
Worst time for (un)successful search:   n 
 
Average successful search, assuming all keys have equal probability 
   to appear 
 
                                 ${1\over n}$\sum _{i=1}^n i = (n+1)/2$ 
 
 
Average unsuccessful search: n 
 
Hence, best and worth time are n, and the average approaches this value. 
 

We can go down to $n/2$ by assuming sorted lists 
 

more
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Time: Unordered: O(n) = n, (n) = n, (n) = n

Ordered: O(n) = n, (n) = n, (n) = n

Space:

O(1)

more
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Time: O(n) = log n, (n) = log n, (n) = log n

Space:

O(1)

more
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NAME

 
CIS 680: Mid Term Exam
 
Mo, May 3, 1999, 50 minutes
Open Notes, Open Books
The exam consists of seven problems
Answers not appearing in designated spaces WILL NOT be graded

Problem #1 (10 points)

What are the time and space complexities of the following code segment.

          read( n ) 
          for i = 1 to n do 
            for j = 1 to i do   write( i, j ) 

a.  

Solve the following reccurence equation exactly.

T(n) = 

b.  

●   

Problem #2 (10 points)

Provide a recursive algorithm that given a binary tree determines the number of leaves in the
tree.

a.  

What is the time and space complexities of your algorithm?b.  

●   

Problem #3 (10 points) Let the height of a tree be the number of nodes in the longest path from
the root to the leaves. For each of the following types of trees, determine the minimum number of
nodes a tree of height 4 can have.

Heapsa.  

Height-biased leftist treesb.  

Binary search treesc.  

AVL treesd.  

Red-black treese.  

●   

Problem #4 (10 points)

Consider the linear time algorithm for initializing max heaps. Show all the intermediate, and final,

trees the algorithm creates on the given tree. 

●   

sample midterm exam
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Problem #5 (10 points)

Consider the priority queue represented by the given height-biased leftist tree. Show the modified
tree under each of the following operations. (Note: The two operations are independent. Each of

them starts from the above tree.) 

________________________________________

Insertion of the key 7.

Deletion of the largest key.

●   

Problem #6 (10 points) Consider the following AVL tree.

Show the modified tree under each of the following operations. (Note: The two operations are
independent. Each of them starts from the above tree.)

________________________________________

Deletion of the key 5

Insertion of the key 10.

●   

Problem #7 (10 points)

Consider the following red-black tree (the red nodes are double circled). What kind of discrepency

●   

sample midterm exam
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(Lb0, RRb, etc.) each of the following operations create.

Addission of the key 21.a.  

Addission of the key 25.b.  

Deletion of the key 18.c.  

Deletion of the key 2.d.  

Deletion of the subtree rooted at 12.e.  

sample midterm exam
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Chapter 1
Foundations

1.1 Background

Programs: solutions to problems expressed as sequences of instructions that manipulate data.

Issues: correctness, maintainability, and efficiency

Tools:

Abstractions

Reduce complexity of problems.

Algorithms

Taming complexity in processes

Data structures

Making data easier to approach

Example: Multiplication of integers in unary and binary representations

1.2 Complexity

#include <iostream.h> 
#include <time.h> 
main(){      int start, finish, i; 
  start = clock(); 
  ........body......... 
  finish = clock(); 
  cout << (finish - start) / CLK_TCK ; 
} 

The �start = clock();� command might be problematic on a shared system. The shell command
�time job� should be more appropriate.

A body of �i=1000000; while(i-);� gives a program of constant time complexity.

A body of �read i; while(i-);� gives a program of linear time complexity.

Resources:

Time

T(P) = constant + T(instance characteristics)

Space

S(P) = constant + S(instance characteristics)

Foundations
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1.3 Measurements

Example Sequential search in a set of distinct numbers.

get key 
for i=1 to n do 
  if key == a[i] then exit 

[more]

Measurements: experimental and analytical.

Best❍   

Worst❍   

Average/expected (difficult to determine)❍   

●   

Analytical measurements: require an identification of key operations that contribute the most to the
complexity.

●   

Asymptotic behavior: We care about growth behavior of complexity functions, not about
constants.

●   

1.4 Asymptotic Notation

Big Oh (O)-Upper Bound

f(n) = O(g(n)) iff f(n) < cg(n)

for some constants c and n0, and all n > n0

Omega ( )-Lower Bound

f(n) = (g(n)) iff f(n) > cg(n)

for some constants c and n0, and all n > n0

Theta ( )-Two-way Bound

f(n) = (g(n)) iff c1g(n) < f(n) < c2g(n)

for some constants c1, c2, and n0, and all n > n0

Little Oh (o)-Only Upper Bound

f(n) = o(g(n)) iff

f(n) = O(g(n)) and f(n) (g(n))

Example: Take a program that reads an input, character by character, and copies that information into the
output. The program will take O(n) time to process all the characters, and O(1) space for its variables.
Specifically,

Foundations
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        var x 
        while( not end-of-input ){ 
          read x 
          write  x 
        } 

Example: Take a program that reads an input, character by character, stores it into a stack, and upon
reaching the end of the input pops the content of the stack into the output. The program will take O(n)
time to process the characters, and O(n) space for the stack. Specifically,

        var x, i, A[] 
        i = 0 
        while( not end-of-input ){ 
          read x 
          A[i] := x 
          i := i + 1 
        } 
        while( i > 0 ){ 
          i := i - 1 
          write A[i] 
        } 

Example: Sequential search in a set of distinct numbers.

get key 
for i=1 to n do 
  if key == a[i] then exit 

[more]

Example: Binary search in an ordered set of distinct numbers.

[more]

1.5 Recurrence Relations

Sequential search: T(n) = 

T(n) = a(n - 1) + b = an + (b - a) = O(n)

Binary search: T(n) = 

T(n) = a log n + b = O(log n)

1.6 Assignment #1 (due We, Sept 29)

Find the exact solution for the following recurrence equation.a.  

Foundations
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T(n) = 

Analyze the running time of the following code segment.

sum = 0 
for i=1 to N do 
  for j=1 to i do 
    sum = sum + i 
  end 
end 

b.  

Write programs of time complexity (1), (n), and (f(n)) for a function f(n) of your choice.
Provide time measurements for execution times of the programs, and derive the coefficients for the
time complexity functions.

c.  

1.7 Feasibility and Intractability

Common functions: O(1)-constant; O(log n)-logarithmic; O(n)-linear; O(nk)-polynomial;
O(2n)-exponential

Theoretical: Feasible--polynomial time; Infeasible--exponential time.

Practical feasibility: only low degree polynomials

Example: the traveling salesman problem is intractable.

1.8 Data Abstraction and Structure

Data Objects

A set of instances or values.

Examples: digits, integers, letters, strings.

Data objects can be primitive or composite elements.

Data structure

A data object together with the relationships that exist among the instances that compose the
object.

Abstract data type

Data objects and a set of operations for acting on the objects. Abstract data types are independent
of any representation we might have in mind.

[front] [up]

Foundations
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Chapter 10
AVL Trees

10.1 Definitions

Named after Adelson, Velskii, and Landis.

Trees of height O(log n) are said to be balanced. AVL trees consist of a special case in which the subtrees of
each node differ by at most 1 in their height.

Balanced trees can be used to search, insert, and delete arbitrary keys in O(log n) time. In contrast,
height-biased leftist trees rely on non-balanced trees to speed-up insertions and deletions in priority queues.

10.2 Height

Claim: AVL trees are balanced.

Proof. Let Nh denote the number of nodes in an AVL tree of depth h

Nh > Nh-1 + Nh-2 + 1

> 2Nh-2 + 1

> 1 + 2(1 + 2Nh-4)

= 1 + 2 + 22N h-4

> 1 + 2 + 22 + 23N h-6

...
> 1 + 2 + 22 + 23 + ... + 2h/2

= 2h/2 - 1

Hence,

2h/2 - 1 < n
h/2 < log 2(n + 1)

h < 2 log 2(n + 1)

A more careful analysis, based on Fibonacci numbers theory, implies the tighter bound of 1.44 log 2(n + 2).

10.3 Rotations

AVL Trees
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LL

RR

LR

AVL Trees
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RL

LL
&
LR

LL

10.4 Insertions and Deletions

Insertions and deletions are performed as in binary search trees, and followed by rotations to correct
imbalances in the outcome trees. In the case of insertions, one rotation is sufficient. In the case of deletions,
O(log n) rotations at most are needed from the first point of discrepancy going up toward the root.

AVL Trees
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Delete 4

Imbalance at �3� implies a LL rotation with �2�

AVL Trees
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Imbalance at �5� implies a RR rotation with �8�.

10.5 Demo Applets

demo of AVL trees●   

demo of AVL trees●   

10.6 Assignment #4 (due We, Oct 20)

Provide an algorithm that, when given a binary search tree, removes in constant space all the nodes from
the tree, in ascending order of keys. How much time your algorithm requires? Show the time and space
analysis of your algorithm.

1.  

Provide an algorithm that, when given a binary search tree, removes in linear time all the nodes from the
tree, in ascending order of keys. How much space your algorithm requires? Show the time and space
analysis of your algorithm.

2.  

Construct a binary search tree by introducing the following keys in the given order: 1, 2, 7, 6, 3, 4, 5.
Then repeatedly use AVL rotations to transform the tree into an AVL tree, while showing all the
intermediate trees being created in the process. In each stage, the AVL transformation should be
conducted at a discrepancy that is farthest from the root.

3.  

[next] [prev] [prev-tail] [front] [up]

AVL Trees
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Chapter 11
Red-black Trees

11.1 Properties

A binary search tree in which

The root is colored black●   

All the paths from the root to the leaves agree on the number of black nodes●   

No path from the root to a leaf may contain two consecutive nodes colored red●   

Empty subtrees of a node are treated as subtrees with roots of black color.

The relation n > 2h/2 - 1 implies the bound h < 2 log 2(n + 1).

11.2 Insertions

Insert the new node the way it is done in binary search trees●   

Color the node red●   

If a discrepancy arises for the red-black tree, fix the tree according to the type of discrepancy.●   

A discrepancy can result from a parent and a child both having a red color. The type of discrepancy is
determined by the location of the node with respect to its grand parent, and the color of the sibling of the
parent.

Discrepancies in which the sibling is red, are fixed by changes in color. Discrepancies in which the siblings are
black, are fixed through AVL-like rotations.

Changes in color may propagate the problem up toward the root. On the other hand, at most one rotation is
sufficient for fixing a discrepancy.

LLr

if �A� is the root, then it should be repainted to black

Red-black Trees
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LRr

 if �A� is the root, then it should be
repainted to black

LLb

LRb

Discrepancies of type RRr, RLr, RRb, and RLb are handled in a similar manner.

Red-black Trees
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insert 1

insert 2

insert 3

RRb discrepancy

insert 4

RRr discrepancy

insert 5

RRb discrepancy

11.3 Deletions

Delete a key, and a node, the way it is done in binary search trees.●   

A node to be deleted will have at most one child. If the deleted node is red, the tree is still a red-black
tree. If the deleted node has a red child, repaint the child to black.

●   

If a discrepancy arises for the red-black tree, fix the tree according to the type of discrepancy. A
discrepancy can result only from a loss of a black node.

●   

Let A denote the lowest node with unbalanced subtrees. The type of discrepancy is determined by the location
of the deleted node (Right or Left), the color of the sibling (black or red), the number of red children in the
case of the black siblings, and and the number of grand-children in the case of red siblings.

In the case of discrepancies which result from the addition of nodes, the correction mechanism may propagate
the color problem (i.e., parent and child painted red) up toward the root, and stopped on the way by a single
rotation. Here, in the case of discrepancies which result from the deletion of nodes, the discrepancy of a
missing black node may propagate toward the root, and stopped on the way by an application of an appropriate
rotation.

Red-black Trees
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Rb0

change of color, sending the deficiency up to the root of the
subtree

Rb1

Red-black Trees
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Rb2

Rr0

might result in LLb discrepancy of parent and child having
both the red color

Rr1

Red-black Trees
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Rr2

Similar transformations apply to Lb0, Lb1, Lb2, Lr0, Lr1, and Lr2.

11.4 Demo Applet

demo applet for red-black trees●   

another demo applet●   

Red-black Trees
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11.5 Assignment #5 (due Fr, Oct 29)

Construct a binary search tree by introducing the following keys in the given order: 4, 3, 2, 1, 11, 8, 5, 6,
7, 9, 10, 12, 13. Color the nodes at odd level with black, and the nodes at even levels with red (the root is
assumed to be at level 1). Then repeatedly use the red-black transformations to transform the tree into a
red-black tree, while showing all the intermediate trees being created in the process.

In each stage, the transformation should be conducted at a discrepancy that is farthest from the root. A
discrepancy is assumed to be caused by a deletion, when the numbers of black nodes in the different
paths are not equal. Otherwise, it is assumed to be caused by an insertion.

1.  

Can every binary search tree be transformed into a red-black tree by using only red-black tree
transformations, assuming the coloring strategy of the previous problem, and that in each stage the
transformation should be conducted at a discrepancy that is farthest from the root? Justify your answer.

2.  

Consider the following operations.

LL

LR

3.  

Red-black Trees
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L

A binary search tree is said to be splayed at a given node, if the node is moved to the root with the above,
and symmetric, operations. Splay trees (applet), or or self-adjusting search trees, are trees which are
splayed whenever their nodes are accessed. On the average, they are accessed and modified in O(log n)
time.

Construct a binary search tree by introducing the following keys in the given order: 7, 6, 5, 4, 3, 2, 1.
Then splay the tree at node 1, and show all the intermediate trees being created in the process. (In the LL
and LR cases, 1 is represented by the node C. In the L case it is represented by the node B.)

[next] [prev] [prev-tail] [front] [up]

Red-black Trees
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Chapter 12
Multi-way Trees

12.1 Definition

A m-way search tree is a tree in which

The nodes hold between 1 to m-1 distinct keysa.  

The keys in each node are sortedb.  

A node with k values has k+1 subtrees, where the subtrees may be empty.c.  

The i�th subtree of a node [v1, ..., vk], 0 < i < k, may hold only values v in the range vi < v < vi+1
(v0 is assumed to equal - , and vk+1 is assumed to equal infty).

d.  

A m-way tree of height h has between h and mh - 1 keys.

12.2 Insertions

Search the key going down the tree until reaching an empty subtree●   

Insert the key to the parent of the empty subtree, if there is room in the node.●   

Multi-way Trees
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insert 8

Insert the key to the subtree, if there is no room in its parent.

insert 27

●   

12.3 Deletions

If the key to be deleted is between two empty subtrees, delete it●   

Multi-way Trees
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delete 8

If the key is adjacent to a nonempty subtree, replace it with the largest key from the left subtree or
the smallest key from the right subtree

●   

Multi-way Trees
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remove 16
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Chapter 13
B-Trees

13.1 Definition

A m-way tree in which

The root has at least one key●   

Non-root nodes have at least m/2  subtrees (i.e., at least (m - 1)/2  keys)●   

All the empty subtrees (i.e., external nodes) are at the same level●   

B-tree of order 3 not a B-tree

B-trees are especially useful for trees stored on disks, since their height, and hence also the number of
disk accesses, can be kept small.

The growth and contraction of m-way search trees occur at the leaves. On the other hand, B-trees grow
and contract at the root.

13.2 Insertions

Insert the key to a leaf●   

Overfilled nodes should send the middle key to their parent, and split into two at the location of the
submitted key.

●   

B-Trees
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add 19

add 21

B-Trees
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13.3 Deletions

Key that is to be removed from a node with non-empty subtrees is being replaced with the largest
key of the left subtree or the smallest key in the right subtree. (The replacement is guaranteed to
come from a leaf.)

●   

B-Trees
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remove 26

If a node becomes under staffed, it looks for a sibling with an extra key. If such a sibling exist, the
node takes a key from the parent, and the parent gets the extra key from the sibling.

●   

B-Trees
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remoce 22

B-Trees
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If a node becomes under staffed, and it can�t receive a key from a sibling, the node is merged with
a sibling and a key from the parent is moved down to the node.

●   

B-Trees
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remove 18

B-Trees
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13.4 Assignment #6 (due We, Nov 3)

Consider B-trees of order 3. Starting from an empty tree, show all the intermediate B-trees
obtained by the sequence of operations: add key 1, add key 2, add key 3, add key 4, add key 5, add
key 6, add key 7, add key 8, add key 9, delete key 1, delete key 2, delete key 3, delete key 4, delete
key 5, and delete key 6.

a.  

Splitting of overflowed nodes may be avoided by redistributing keys to siblings, in a manner
similar to that taking place for avoiding merging of underflowed nodes. Repeat the addition
portion of the previous problem, utilizing redistribution of keys when possible.

b.  

Give a procedure that will transform any B-Tree of degree 4 into a Red-Black Tree, and a
procedure that will transform any Red-Black Tree into a B-Tree of degree 4.

c.  
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Chapter 14
Graph Traversal

14.1 Depth-First Traversal

algorithm  dft(x) 
   visit(x) 
   FOR each y such that (x,y) is an edge DO 
     IF y was not visited yet THEN 
        dft(y) 

A recursive algorithm implicitly recording a �backtracking� path from the root to the node currently under
consideration

 

 

Graph Traversal
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14.2 Breadth-First Traversal

Visit the nodes at level i before the nodes of level i+1.

Graph Traversal
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visit(start node) 
queue <- start node 
WHILE queue is nor empty DO 
  x <- queue 
  FOR each y such that (x,y) is an edge 
                  and y has not been visited yet DO 
    visit(y) 
    queue <- y 
  END 
END 

 

 

Graph Traversal
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14.3 Representations of Graphs

Adjacency Matrices

Graphs G = (V, E) can be represented by adjacency matrices G[v1..v|V |, v1..v|V |], where the rows and
columns are indexed by the nodes, and the entries G[vi, vj] represent the edges. In the case of unlabeled
graphs, the entries are just boolean values.

A B C D
A 0 1 1 1
B 1 0 0 1
C 1 0 0 1
D 1 1 1 0

In case of labeled graphs, the labels themselves may be introduced into the entries.

A B C D
A 10 4 1
B 15
C 9
D

Adjacency matrices require O(|V |2) space, and so they are space-efficient only when they are dense (that
is, when the graphs have many edges). Time-wise, the adjacency matrices allow easy addition and
deletion of edges.

Adjacency Lists

A representation of the graph consisting of a list of nodes, with each node containing a list of its
neighboring nodes.

Graph Traversal
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This representation takes O(|V | + |E|) space.

14.4 Demo Applets

dft applet●   

bft applet●   
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Chapter 15
Least Cost Spanning Trees

15.1 Prim�s Algorithm

At each stage, include the least cost edge whose addition to the selected edges forms a tree.

 

 

 

 

The approach takes O(|E| log |V |) time for a graph G = (V, E). The time requirement is driven by the algorithm
used for selecting the edges to be added in each stage.

Assume a priority queue Q for the nodes of the graph that have not been chosen yet.a.  

For the priority evaluation, assign each node in Q the least cost of adding it into V - Q (i.e., the nodes
already selected for inclusion the spanning tree T).

b.  

Least Cost Spanning Trees
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Initially, the priority queue is a complete tree, and each node carries a priority value  larger than the
cost of all the edges.

c.  

Upon removing a node u from the queue Q, and adding it into the spanning tree T, the priority value is
modified for each node v in Q that is adjacent to u. The changing of the priority value of a node may
require the shifting of the up or down in the tree.

d.  

The initialization of the the priority queue takes O(|V |) time. Each deletion of a node from the queue takes
O(log |V |) time, and so O(|V | log |V |) time takes to empty the queue. A modification of a priority value of a
node in the queue takes O(log |V |) time, and |E| such changes are needed.

Consequently, the algorithm takes O(|V |) + O(|V | log |V |) + O(|E| log |V |) = O(|E| log |V |) time.

 

    

  

Least Cost Spanning Trees
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15.2 Kruskal�s Algorithm

A greedy algorithm: Visit the edges in order of increasing cost. Include just those edges that don�t create
cycles.

 

 

 

 

Kruskal�s algorithm requires O(|E| log |E|) time for sorting the edges, O(|E|) time to traversing them, and O(|V |
log |V |) time for checking the existence of cycles (employing the union-find algorithm below). Hence, the
algorithm is of time complexity O(|E| log |E|).

15.3 Union-Find Algorithm

Kruskal�s algorithm relies on a union-find algorithm for checking cycles. The �union� operation unites
equivalent sets of elements, and the �find� operation determines the sets in which the elements reside.

Least Cost Spanning Trees
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Components are represented by linked lists, with each element carrying the name of its component.
Initially, each of the components consists of a single node.

●   

Merging of components is accomplished by moving the elements of the smaller set into the bigger one.
To that end, the shorter linked list is traversed to change the name of the set recorded in the elements,
and the the last element in the shorter linked list is set to point to the first element of the longer list.

●   

Least Cost Spanning Trees
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D

A

C

A

The time to merge two components is linear in the number of elements in the shorter list●   

Each node can be visited at most O(log |V |) times, since each merge at least doubles the cardinality of
the shorter list. Hence, the algorithm is of time complexity O(|V | log |V |)

●   

15.4 Demo Applets and Resources

Prim�s algorithms●   

applet for Kruskal�s algorithm●   

Kruskal�s algorithm●   

Kruskal�s and Prim�s algorithms●   

Info about the union-find algorithm●   

15.5 Assignment #7 (due We, Nov 10)

Write a (real) program that reads the edges of a directed graph, internally stores the graph using the adjacency
list approach, and then prints

The list of nodes, and the list of nodes that are adjacent to each of these node.a.  

An adjacency matrix of the graph.b.  

A topologically sorted list of the nodes of the graph, if the graph is acyclic.

A list of nodes is said to be topologically sorted, if node �A� precedes node �B� in the listing whenever
there exists an edge from node �A� to node �B�.

The lists of nodes �A,B,C� and �A,C,B� are the only topologically sorted lists for the the following graph.
The list �B,A,C� is an example of one which is not topologically ordered.

c.  

Least Cost Spanning Trees
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Hint: Assume an indegree field in each node.

Your program should be well documented, and accept files of pairs of integers for input. Each pair represents
an edge.

Submit a printout of the program, of an input file, and of the corresponding output.
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Chapter 16
Brute Force Algorithms

These are algorithms that use obvious non-sophisticated approaches to solve the problems in hand.
Typically they are useful for small domains, due to large overheads in sophisticated approaches.

16.1 Sequential Search

A search algorithm which traverses all the elements of the given set.

A more sophisticated approach, in cases that many searches are made, is to first sort the sets and then use
binary search.

16.2 Hamilton Circuits

A Hamilton Circuit is a closed path in a graph, in which each node appears exactly once. The Hamilton
Circuit problem asks whether such a path exists for the given graph.

The Hamilton Circuit problem is an NP-hard problem, and so no polynomial time algorithm is available
for it. In particular, a brute force approach of examining all the possible routes requires the inspection of
(n - 1)! candidates.

[next] [front] [up]
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Chapter 17
Greedy Algorithms

A greedy algorithm repeatedly executes a procedure which tries to maximize the return based on
examining local conditions, with the hope that the outcome will lead to a desired outcome for the global
problem. In some cases such a strategy is guaranteed to offer optimal solutions, and in some other cases
it may provide a compromise that produces acceptable approximations.

Typically, the greedy algorithms employ simple strategies that are simple to implement and require
minimal amount of resources.

17.1 Prim�s Minimal Spanning Tree Algorithm

Grows a tree by adding in each step a branch with minimal cost. Despite this �short sight� approach, the
outcome is optimal.

17.2 Kruskal�s Minimal Spanning Tree Algorithm

At each stage, the edge with the least cost is processed.

17.3 Dijkstra�s Single-Source Shortest Paths Algorithm

Establish the shortest path between a single source node and all of the other nodes in a graph.

Greedy algorithm: Add an edge that connects a new node to those already selected. The path from the
source to the new node should be the shortest among all the paths to nodes that have not been selected
yet.

 

Greedy Algorithms
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The algorithm has time complexity O(|V |2). (Note the similarity and difference relatively to Prim�s
algorithm.)

Greedy Algorithms
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17.4 Coin Change

The problem asks to provide a change for a specified amount, using a minimal number of coins. A
greedy algorithm may at each stage employ the criteria of providing the largest available coin which is
not greater than the amount still owed.

17.5 Egyptian Fractions

Each fraction can be expressed as a sum of different fractions with unit numerators. Such representations
have been used by the ancient Egyptians.

A given fraction might have more than one Egyptian representation. A greedy algorithm, for finding such
a representation, can at each stage add to the sum the largest unit fraction which does not cause the sum
to exceed the fraction. Fibonacci proved that this greedy algorithm is guaranteed to halt.

17.6 Map Coloring

The map coloring problem asks to assign colors to the different regions, where adjacent regions are not
allowed to have the same color. There is no general algorithm to assign minimal number of colors, yet
each map has an assignment which uses no more than four colors.

A greedy approach repeatedly choose a new color, and assign it to as many regions as possible.

17.7 Voting Districts

Given an integer number N, and a map in which each region is assigned an integer number (= population
size), the problem asks to create N district with minimal deviation of population. The regions in each
district must be connected.

A greedy algorithm can start by choosing the N biggest regions as cores of the different districts. Then, in
each iteration, the largest unassigned region, among those that are adjacent to assigned regions, is
assigned to the district with the smallest population.

17.8 Vertex Cover

A vertex cover of a graph G = (V, E) is a subset of nodes, where the nodes of the subset are attached all
the edges of the graph. The problem of finding a vertex cover of minimum size is NP-complete, implying
the non-existence of efficient algorithms for solving the problem accurately.

A greedy algorithm may provide approximated solutions, by selecting in each stage a vertex which
covers the most edges that have not been covered yet.

Greedy Algorithms
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17.9 0/1 Knapsack

Given a set of N item (vi, wi), and a container of capacity C, find a subset of the items that maximizes the

value  vi while satisfying the weight constraints  wi < C. This problem is a NP-hard problem,

requiring an exhaustive search over the 2N possible combinations of items, for determining an exact
solution.

A greedy algorithm may consider the items in order of decreasing value-per-unit weight vi/wi. Such an
approach guarantees a solution with value no worst than 1/2 the optimal solution.

17.10 Demo Applets

Dijkstra�s Algorithm●   

Dijkstra�s Algorithm●   
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CIS 680: DATA STRUCTURES
Eitan Gurari, Autumn 1999

Data abstraction; introduction to algorithm analysis; data structures and file structures, including lists,
trees, and graphs; searching and sorting (OSU Bulletin, OSU Schedule)

TEXT

S. Sahni, Data Structures, Algorithms, and Applications in C++, McGraw-Hill, 1998.

lecture notes -- pointers -- sample midterm exam -- sample final exam -- midterm exam -- final exam

PREREQUISITES: 560 and 570; Stat 427 or equiv; and Math 366; or grad standing.

GRADING POLICY
25% Homework (10 assignments)●   

30% Midterm exam (Mo, October 25)●   

45% Final exam (Mon, Dec 6, 11:30 - 1:18)●   

Notes:

The exams will be with open notes and open books.a.  

No homework will be accepted after the end of class on due date. The assignments are due in
class; don�t turn them in my office or my mailbox. Also, keep all your graded works until you
receive the final grade for the course.

b.  

Those who graduate this quarter will have their final exam on We, Dec 1, 11:30am-1:20am.c.  

Exceptions to the above dates of exams must be arranged with the instructor during the first week
of the quarter.

d.  

TIME/ROOM MWF, 12:30-1:20, DL 357

INSTRUCTOR Eitan Gurari, Dreese 495, 292-3083; email: gurari@cis.ohio-state.edu; office hours:
MF, 11:30-12:20, and by appointment

GRADER Xiaojin Wang, Caldwel 414, 298-4460, xw@cis.ohio-state.edu, Office Hours: Mo, 3:30-5:00,
and by appointment.

ASSIGNMENTS #1 (due We, Sept 29)
#2 (due We, Oct 6)
#3 (due We, Oct 13)
#4 (due We, Oct 20)
#5 (due Fr, Oct 29)
#6 (due We, Nov 3)
#7 (due We, Nov 10)

cis680.html

file:///E|/Resonance/Tutorials/Computers/Data Structures/Data Structures1/cis680.html (1 of 2) [3/16/2002 10:00:26 ;-]]

javascript:if(confirm('http://www.ureg.ohio-state.edu/course/autumn/book3/B117.htm  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.ureg.ohio-state.edu/course/autumn/book3/B117.htm#680'
javascript:if(confirm('http://www.ureg.ohio-state.edu/course/autumn/msched/M117.htm  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.ureg.ohio-state.edu/course/autumn/msched/M117.htm#680'
javascript:if(confirm('http://www.mhhe.com/engcs/compsci/sahni/  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.mhhe.com/engcs/compsci/sahni/'
javascript:if(confirm('http://www.cis.ohio-state.edu/cis_syllabi/560.html  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.cis.ohio-state.edu/cis_syllabi/560.html'
javascript:if(confirm('http://www.cis.ohio-state.edu/cis_syllabi/570.html  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.cis.ohio-state.edu/cis_syllabi/570.html'
javascript:if(confirm('http://www.ureg.ohio-state.edu/course/autumn/au99finals.html  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.ureg.ohio-state.edu/course/autumn/au99finals.html'
mailto:gurari@cis.ohio-state.edu
mailto:xw@cis.ohio-state.edu


#8 (due We, Nov 17)
#9 (due We, Dec 1)

http://www.cis.ohio-state.edu/~gurari/course/cis680/cis680.html

cis680.html

file:///E|/Resonance/Tutorials/Computers/Data Structures/Data Structures1/cis680.html (2 of 2) [3/16/2002 10:00:26 ;-]]



[next] [tail] [up]

Chapter 19
Backtracking Algorithms

19.1 Solution Spaces

Backtracking is a refinement of the brute force approach, which systematically searches for a solution to
a problem among all available options. It does so by assuming that the solutions are represented by
vectors (v1, ..., vm) of values and by traversing, in a depth first manner, the domains of the vectors until
the solutions are found.

When invoked, the algorithm starts with an empty vector. At each stage it extends the partial vector with
a new value. Upon reaching a partial vector (v1, ..., vi) which can�t represent a partial solution, the
algorithm backtracks by removing the trailing value from the vector, and then proceeds by trying to
extend the vector with alternative values.

ALGORITHM try(v1,...,vi) 
   IF (v1,...,vi) is a solution THEN RETURN (v1,...,vi) 
   FOR each v DO 
      IF (v1,...,vi,v) is acceptable vector  THEN 
        sol = try(v1,...,vi,v) 
        IF sol != () THEN RETURN sol 
      END 
   END 
   RETURN () 

If Si is the domain of vi, then S1 × ... × Sm is the solution space of the problem. The validity criteria
used in checking for acceptable vectors determines what portion of that space needs to be searched, and
so it also determines the resources required by the algorithm.

The traversal of the solution space can be represented by a depth-first traversal of a tree. The tree itself is
rarely entirely stored by the algorithm in discourse; instead just a path toward a root is stored, to enable
the backtracking.

Backtracking Algorithms
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19.2 Traveling Salesperson

The problem assumes a set of n cities, and a salesperson which needs to visit each city exactly once and
return to the base city at the end. The solution should provide a route of minimal length.

The route (a, b, d, c) is the shortest one for the following one, and its length is 51.

The traveling salesperson problem is an NP-hard problem, and so no polynomial time algorithm is
available for it. Given an instance G = (V, E) the backtracking algorithm may search for a vector of cities
(v1, ..., v|V |) which represents the best route.

The validity criteria may just check for number of cities in of the routes, pruning out routes longer than
|V |. In such a case, the algorithm needs to investigate |V ||V | vectors from the solution space.

On the other hand, the validity criteria may check for repetition of cities, in which case the number of
vectors reduces to |V |!.

Backtracking Algorithms
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19.3 The Queens Problem

Consider a n by n chess board, and the problem of placing n queens on the board without the queens
threatening one another.

The solution space is {1, 2, 3, , n}n. The backtracking algorithm may record the columns where the
different queens are positioned. Trying all vectors (p1, ..., pn) implies nn cases. Noticing that all the
queens must reside in different columns reduces the number of cases to n!.

For the latter case, the root of the traversal tree has degree n, the children have degree n - 1, the grand
children degree n - 2, and so forth.

Checking for threatening positions along the way my further reduce the number of visited configurations.

Backtracking Algorithms
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19.4 Convex Hull (Graham�s Scan)

The problem asks to construct the shortest polygon which encloses a given set of points on a plan.
Intuitively, the polygon can be determined by placing a rubber around the set.

Determine an extreme point with the largest x coordinate. Sort the points in order of increasing angles,
relatively to the extreme point.

Traverse the points in the sorted order, adding them to the partial solution upon making a turn of less
than 180 degrees, and backtracking when making a larger turn.

Backtracking Algorithms
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The algorithm requires O(n log n) time for sorting the points, and O(n) time to select an appropriate
subset.

19.5 Generating Permutations

A permutation can be obtained by selecting an element in the given set and recursively permuting the
remaining elements.

Backtracking Algorithms

file:///E|/Resonance/Tutorials/Computers/Data Structures/Data Structures1/cis680Ch19.html (5 of 6) [3/16/2002 10:00:28 ;-]]



At each stage of the permutation process, the given set of elements consists of two parts: a subset of
values that already have been processed, and a subset that still needs to be processed. This logical
seperation can be physically realized by exchanging, in the i�th step, the i�th value with the value being
chosen at that stage. That approaches leaves the first subset in the first i locations of the outcome.

permute(i) 
   if i == N  output A[N] 
   else 
      for j = i to N do 
         swap(A[i], A[j]) 
         permute(i+1) 
         swap(A[i], A[j]) 

19.6 Demo Applets

the queens problem●   

2D convex hulls●   

Graham�s scan algorithm for convex hulls●   

3D convex hulls●   

[next] [front] [up]

Backtracking Algorithms
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Chapter 2
Lists

2.1 Specification

AbstractDataType  LinearList{ 
  instances 
    finite ordered collection of elements 
  operations 
    create():   create an empty list 
    destroy(): 
    IsEmpty() 
    Length(): 
    Find(k):    find k'th element 
    Search(x):  find position of x 
    delete(): 
    insert(x): insert x after the current element element 
    output(): 
} 

2.2 Array Representation

Operations require simple implementations.●   

Insert, delete, and search, require linear time●   

Inefficient use of space●   

2.3 One-way Linked Representation

Lists
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Insert and delete in O(1) time●   

Search in O(n) time●   

Memory overhead, but allocated only to entries that are present.●   

2.4 Circular One-way Linked Representation

The head node, together with the circular representation, simplify the dealing with boundaries
conditions

●   

2.5 Doubly Linked Representation

Insert and delete in (1) time.●   

We can also go here for doubly linked list with an additional header node.●   

[next] [front] [up]

Lists
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Chapter 20
Branch-and-Bound Algorithms

A counter-part of the backtracking search algorithm which, in the absence of a cost criteria, the algorithm
traverses a spanning tree of the solution space using the breadth-first approach. That is, a queue is used,
and the nodes are processed in first-in-first-out order.

If a cost criteria is available, the node to be expanded next (i.e., the branch) is the one with the best cost
within the queue. In such a case, the cost function may also be used to discard (i.e., the bound) from the
queue nodes that can be determined to be expensive. A priority queue is needed here.

20.1 Cost-Based Tree Traversal

A function can be considered to be a tree generator, if when given a node X and index i it produces the i
�th child of the node.

The following function produces a complete binary tree of 11 nodes.

The recursive function provided for deriving permutations is another example of a function that may be
used to generate trees.

Besides for a tree generator function, we also need a cost function to decide in what order to traverse the
nodes when searching for a solution. The algorithm proceeds in the following manner.

Initialization: The root of the of the tree is declared to be alive.1.  

Visit: The cost criteria decides which of the live nodes is to process next.2.  

Replacement: The chosen node is removed from the set of live nodes, and its children are inserted
into the set. The children are determined by the tree generator function.

3.  

Iteration: The visitation and replacement steps are repeated until no alive nodes are left.4.  

In the case of backtracking the cost criteria assumes a last-in-first-out (LIFO) function, which can be
realized with a stack memory. A first-in-first-out cost criteria implies the FIFO branch-and-bound
algorithm, and it can be realized with queue memory. A generalization to arbitrary cost criteria is the

Branch-and-Bound Algorithms
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basis for the priority branch-and-bound algorithm, and a priority queue memory can be employed to
realize the function.

20.2 Mazes

20.3 Traveling Salesperson Problem

20.4 Job Scheduling

20.5 Integer Linear Programming

[next] [prev] [prev-tail] [front] [up]
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Chapter 21
Dynamic Programming Algorithms

The approach assumes a recursive solution for the given problem, with a bottom-up evaluation of the
solution. The subsolutions are recorded (in tables) for reuse.

21.1 Fibonnaci Numbers

A top-down approach of computing, say, f(5) is inefficient do to repeated subcomputations.

A bottom-up approach computes f(0), f(1), f(2), f(3), f(4), f(5) in the listed order.

21.2 0/1 Knapsack Problem

21.3 All Pairs Shortest Paths (Floyd-Warshall)

A dynamic programming algorithm.

FOR k=1 TO n 
  FOR i=1 TO n 
    FOR j=1 TO n 
      c(i,j,k) = min(  c(i,j,k-1), 
                       c(i,k,k-1)+c(k,j,k-1) 
                    ) 

k = Ø a b c d e f a 1  7 5  b 7  3  c  1 2 d 8  e 4 f

k = {a}
a b c d e f a 1  7 5  b 7,b-a-c ,b-a-d 3,b-a-e ,b-a-f c ,c-a-d 1,c-a-e 2,c-a-f d
8,d-a-e ,d-a-f e 4,e-a-f f

Dynamic Programming Algorithms
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k = {a, b}
k = {a, b, c}
k = {a, b, c, d}
k = {a, b, c, d, e}
k = {a, b, c, d, e, f}

21.4 Demo Applets

Floyd�s algorithm●   

21.5 Assignment #9 (due We, Dec 1)

Show the tree of memory states traversed by our recursive permutation algorithm for input �a,b,c,d
�.

1.  

Provide a recursive backtracking algorithm for the vertex cover problem.2.  

Provide a branch-and-bound algorithm for the 0/1 knapsack problem.3.  

Provide a dynamic programming algorithm for the coin exchange problem.4.  

[prev] [prev-tail] [front] [up]
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Chapter 3
Stacks

3.1 Specification

A special case of lists in which restrictions are placed on where insertions and deletions can take place.

AbstractDataType Stack{ 
  instances 
     linear list of element, with top and bottom elements 
  operations 
    Create() 
    IsEmpty() 
    IsFull() 
    Top() 
    Add(x) 
    Delete() 
} 

3.2 Array Representation

Insert and delete in O(1) time.●   

3.3 One-way Linked Representation

Insert and delete in O(1) time●   

Stacks
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No advantage to double-linked representation.●   

[next] [prev] [prev-tail] [front] [up]

Stacks
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Chapter 4
Queues

4.1 Specification

 
\Verbatim 
AbstractDataType Queue{ 
  instances 
     linear list of element, with top and bottom elements 
  operations 
    Create() 
    IsEmpty() 
    IsFull() 
    First() 
    Last() 
    Add(x) 
    Delete() 
} 

4.2 Circular Array Representation

Insert and delete in O(1) time●   

4.3 Circular One-way Linked Representation

Queues
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Insertion O(1), deletion O(n); or vice-versa●   

4.4 Doubly Linked Representation

Insert and delete in (1) time.●   

[prev] [prev-tail] [front] [up]

Queues
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Chapter 5
General Trees

Suitable for representing hierarchies

AbstractDataType tree{ 
  instances 
    A set of elements: (1) empty or having a distinguished root element 
    (2) each non-root element having exactly one parent element 
  operations 
    root() 
    degree() 
    child(k) 
} 

Concepts: tree, subtree, root, leaf, parent, children, level, degree of node, degree of tree, height

5.1 Properties

Full tree A tree with all the leaves at the same level, and all the non-leaves having the same degree.●   

Complete Tree A full tree in which the �last� elements are deleted.●   

Level h of a full tree has dh-1 nodes.●   

The first h levels of a full tree have●   

General Trees
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nodes.

A tree of height h and degree d has at most dh - 1 elements●   

5.2 Traversal

Level order

x := root() 
if( x ) queue (x) 
while( queue not empty ){ 
  x := dequeue() 
  visit() 
  i=1; while( i <= degree() ){ 
     queue( child(i) ) 
  } 
} 

Preorder

procedure preorder(x){ 
  visit(x) 
  i=1; while( i <= degree() ){ 
     preorder( child(i) ) 
  } 
} 

Postorder

General Trees
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procedure postorder(x){ 
  i=1; while( i <= degree() ){ 
     postorder( child(i) ) 
  } 
  visit(x) 
} 

Inorder

Meaningful just for binary trees.

procedure inorder(x){ 
  if( left_child_for(x) ) { inorder( left_child(x)  ) } 
  visit(x) 
  if( right_child_for(x) ) { inorder( right_child(x)  ) } 
} 

Usages for �visit�: determine the height, count the number of elements

5.3 Representations

Nodes consisting of a data field and k pointers1.  

Nodes consisting of w data field and two pointers: a pointer to the first child, and a pointer to the
next sibling.

2.  

General Trees
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A tree of degree k assumes an array for holding a complete tree of degree k, with empty cells
assigned for missing elements.

3.  

5.4 Demo Applets

binary search tree

5.5 Assignment #2 (due We, Oct 6)

Assume binary trees in which the leaf nodes hold integer numbers and the non-leaf nodes hold the
binary operations �+�, �-�, �*�, and �/�.

Provide an algorithm that, when given the root of a tree, evaluates the expression represented
by the tree.

a.  

Provide an algorithm that, when given the root of a tree, outputs a program which evaluates
the expression represented by the tree. The program should consist just of instructions of the
form �var = integer�, �var = var + var�, �var = var - var�, �var = var *
var�, and �var = var / var�, where each �var� stands for a variable name.

b.  

1.  

Assume binary trees in which each node carries a name. Provide an algorithm that, when given the
root of a tree, writes the names of the nodes of the tree level-wise from bottom up, and in each level
from right to left. Your algorithm should be of time complexity O(n), where n denotes the number of
nodes in the trees.

2.  

[next] [front] [up]
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Chapter 6
Selection Trees

A selection tree is a complete binary tree in which the leaf nodes hold a set of keys, and each internal
node holds the �winner� key among its children.

6.1 Modifying a Key

It takes O(log n) time to modify a selection tree in response to a change of a key in a leaf.

   

6.2 Initialization

The construction of a selection tree from scratch takes O(n) time by traversing it level-wise from bottom
up.

   

6.3 Application: External Sort

Given a set of n values 16 9 10 8 6 11 12 1 4 7 14 13 2 15 5 3 n = 16
divide it into M chuncks, 16 9 10 8 6 11 12 1 4 7 14 13 2 15 5 3 M = 4

internally sort each chunk, 8 9 10 16 1 6 11 12 4 7 13 14 2 3 5 15

Selection Trees
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construct complete binary tree of M
leaves with the chunks attached to

the leaves.

Convert the tree into a selection tree
with the keys being fed to the leaves

from the chunks

Remove the winner from the tree

Feed to the empty leaf the next value
from its corresponding chunk

Selection Trees
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Adjust the selection tree to the
change in the leaf

Repeat the deletion subprocess until
all the values are consumed.

The algorithm takes  time to internally sort the elements of the chunks, O(M) to
initialize the selection tree, and O(n log M) to perform the selection sort. For M « n the total time
complexity is O(n log n).

●   

To reduce I/O operations, inputs from the chunks to the selection tree should go through buffers.●   

[prev] [prev-tail] [front] [up]
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Chapter 7
Heaps

A heap is a complete tree with an ordering-relation R holding between each node and its descendant.

Examples for R: smaller-than, bigger-than

Assumption: In what follows, R is the relation �bigger-than�, and the trees have degree 2.

Heap Not a heap

7.1 Adding an Element

Add a node to the tree1.  

Move the elements in the path from the root to the new node one position down, if they are smaller
than the new element

new element 4 7 9

2.  

Heaps
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modified tree

Insert the new element to the vacant node3.  

A complete tree of n nodes has depth log n , hence the time complexity is O(log n)4.  

7.2 Deleting an Element

Delete the value from the root node, and delete the last node while saving its value.

before after

1.  

As long as the saved value is smaller than a child of the vacant node, move up into the vacant node
the largest value of the children.

2.  

Heaps
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Insert the saved value into the vacant node3.  

The time complexity is O(log n)4.  

7.3 Initialization

Brute Force

Given a sequence of n values e1, ..., en, repeatedly use the insertion module on the n given values.

Level h in a complete tree has at most 2h-1 = O(2n) elements●   

Levels 1, ..., h - 1 have 20 + 21 +  + 2h-2 = O(2h) elements●   

Each element requires O(log n) time. Hence, brute force initialization requires O(n log n) time.

elements.

●   

Efficient

Insert the n elements e1, ..., en into a complete tree●   

Heaps
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For each node, starting from the last one and ending at the root, reorganize into a heap the subtree
whose root node is given. The reorganization is performed by interchanging the new element with
the child of greater value, until the new element is greater than its children.

●   

The time complexity is O(0 * (n/2) + 1 * (n/4) + 2 * (n/8) +  + (log n) * 1) = O(n(0  2-1 + 1  2-2

+ 2  2-3 +  + (log n)  2- log n)) = O(n)

since the following equalities holds.  k = 1 (k - 1)2-k =2[  k = 1 (k - 1)2-k] - [  k = 1 (k -

1)2-k] =[  k = 1 k2-k] - [  k = 1 (k - 1)2-k] =  k = 1 [k - (k - 1)]2-k =  k = 1 2-k =1

●   

Heaps
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7.4 Applications

Priority Queue A dynamic set in which elements are deleted according to a given ordering-relation.

Heap Sort Build a heap from the given set (O(n)) time, then repeatedly remove the elements from the
heap (O(n log n)).

7.5 Implementation

An array. The root is at location 1. Location i > 1 is a child of i/2 .

7.6 Demo Applets

demo of heap●   
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Chapter 8
Height-Biased Leftist Trees

8.1 Definitions

An external node is an imaginary node in a location of a missing child.

Notation. Let the s-value of a node be the shortest distance from the node to an external node.

An external node has the s-value of 0.●   

An internal node has the s-value of 1 plus the minimum of the s-values of its internal and external
children.

●   

In a height-biased leftist tree the s-value of a left child of a node is not smaller than the s-value of the
right child of the node.

height-biased non height-biased

8.2 Merging Height-Biased Leftist Trees

Recursive algorithm

Consider two nonempty height-biased leftist trees A and B, and a relation (e.g., smaller than) on
the values of the keys.

●   

Height-Biased Leftist Trees
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Assume the key-value of A is not bigger than the key-value of B●   

Let the root of the merged tree have the same left subtree as the root of A●   

Let the root of the merged tree have the right subtree obtained by merging B with the right subtree
of A.

●   

If in the merged tree the s-value of the left subtree is smaller than the s-value of the right subtree,
interchange the subtrees.

●   

For the following example, assume the key-value of each node equals its s-value.

Height-Biased Leftist Trees
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Time complexity

Linear in the rightmost path of the outcome tree.●   

The rightmost path of the the outcome tree is a shortest path●   

A shortest path can�t contain more than log n nodes.

Proof If the shortest path can contain more than log n nodes, then the first 1 + log n levels should
include 20 + 21 +  + 2log n = 21+log n - 1 = 2n - 1 nodes. In such a case, for n > 1 we end up with
n > 2n - 1.

●   

8.3 Application: Priority Queues

A data type which elements may be added in arbitrary order, but can be removed in order that fits a
priority function.

Assumption for the examples of this section: priority goes for the largest value.

Merge

Use general keys, instead of the s-values, for determining the roots.

Height-Biased Leftist Trees
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Time Complexity O(log n)

Height-Biased Leftist Trees
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Add

The added element is treated as a height-biased leftist tree to be merged with the tree representing the
queue.

Delete

Delete the root then merge the two subtrees.

Initialization

Brute Force: Use the add operation repeatedly. Time complexity O(n log n)

Specialized Approach:

Insert the given elements into a queue, taking each of them to be a height-biased leftist tree.1.  

As long as the queue contains more than one tree, remove the next pair of trees from the queue,
merge these tree, and insert the outcome to the queue.

2.  

Height-Biased Leftist Trees
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Time complexity: (n/2)  O(1) + (n/4)  O(2) + (n/8)  O(3) +  = O(n)

8.4 Weight-Biased Leftist Trees

A variant of the height-biased leftist tree, in which the s-value of a node is the number of nodes in the
subtree defined by the node.

8.5 Assignment #3 (due We, Oct 13)

Let a min-max heap be a complete binary tree, consisting of min and max nodes satisfying the
following conditions.

The root is a min node.a.  

Min nodes can have only max nodes for children, and max nodes can have only min nodes
for children.

b.  

The descendents of a min node may not hold values smaller than the one associated with the
min node.

c.  

The descendents of a max node may not hold values greater than the one associated with the
max node.

d.  

You have to perform the following activities in the given order.

Draw a min-max tree consisting of 30 nodesi.  

Add to your tree a new key, smaller than the one in the root. Show the outcome tree, as well
as all the intermediate trees.

Assume a variant of the algorithm for adding values to standard heaps in which, except for
the initial step, comparisons and swapping are made with grandparents instead of parents.

ii.  

Add to your tree a second value, bigger than those of the children of the root. Use the
algorithm of the previous item, and also here draw the intermediate and final trees.

iii.  

Delete the min value from the (root of the) tree. Show the outcome tree, as well as all the
intermediate trees.

Assume a variant of the algorithm for deleting values from standard heaps, in which
comparisons and swapping are done between nodes and their grandchildren. Local
corrections of comparisons and swaps between the grandchildren and their parents, might
also be needed.

iv.  

1.  

Height-Biased Leftist Trees
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Delete the max value from the (largest child of the root of the) tree. Show all the
intermediate and final trees.

v.  

Show the following weight-biased leftist trees, and all the intermediate trees used to create them.

The initialization tree for the set of values {2, 4, 6, 8, 10, 12, 14}.a.  

The modified tree after adding the value of 17 to the tree in (a).b.  

The modified tree after adding the value 15 to the tree in (b).c.  

The modified tree after deleting the largest value from the tree in (c).d.  

The modified tree after deleting the largest value from the tree in (d).e.  

2.  

[prev] [prev-tail] [front] [up]

Height-Biased Leftist Trees
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[next] [tail] [up]

Chapter 9
Binary Search Trees

9.1 Characteristics

Trees in which the key of an internal node is greater than the keys in its left subtree and is smaller than
the keys in its right subtree.

9.2 Search

search ( tree,key ) 
  IF empty tree            THEN return not-found 
  IF key == value in root  THEN return found 
  IF key  > value in root  THEN search (left-subtree,  key) 
                                search (right-subtree, key) 

Time: O(depth of tree)

9.3 Insertion

insert 6 insert 10

9.4 Deletion

The way the deletion is made depends on the type of node holding the key.

Node of degree 0

Delete the node

Binary Search Trees
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Node of degree 1

Delete the node, while connecting its predecessor to the successor.

      

Node of degree 2

Replace the node containing the deleted key with the node having the largest key in the left
subtree, or with the node having the smallest key in the right subtree.

     

9.5 Demo Applets

demo applet binary search trees●   

[next] [front] [up]

Binary Search Trees
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Time: O(1 + 2 + ... + n) = O(n2). Space: O(1)a.  

b.  
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FUNCTION leaves( T ) 
  IF T is empty  THEN return 0 
  IF T is a leaf THEN return 1 
  IF T has 2 children THEN 
     return [ leaves( left(T) ) + leaves( right(T) )] 
  IF T has left child THEN return leaves( left(T) ) 
  return leaves( right(T) ) 
END 

a.  

O(n)b.  
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(a) 8. (b) 4. (c) 4. (d) 7. (e) 6.
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a.  

b.  
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RL transformation at 8:

a.  

LR transformation at 11:

b.  
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LLra.  

RLrb.  

Lb2c.  

Lb0d.  

Lr0e.  
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T(n) = O(n6), S(n) = O(n6),a.  

T(n) = O(log n), S(n) = O(log n),b.  

file:///E|/Resonance/Tutorials/Computers/Data Structures/Data Structures1/cis680-sol3-23.html [3/16/2002 10:00:41 ;-]]



a.  
biggerb.  

file:///E|/Resonance/Tutorials/Computers/Data Structures/Data Structures1/cis680-sol3-24.html [3/16/2002 10:00:41 ;-]]



Truea.  

Trueb.  

Truec.  

Falsed.  

Falsee.  
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FUNCTION height( T ) 
  IF T is empty  THEN return 0 
  IF T is a leaf THEN return 1 
  RETURN  1 + max( height( left(T) ), leaves( right(T) ) ) 
END 

a.  

O(n)b.  

T(n)=O(n), S(n)=O(log n)c.  

O(n)d.  
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a.  

b.  

file:///E|/Resonance/Tutorials/Computers/Data Structures/Data Structures1/cis680-sol3-27.html [3/16/2002 10:00:42 ;-]]



Deletion of 4a.  

Insertion of 16b.  
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LLra.  

RLrb.  

Lb2 (18 goes up) or none (22 goes up)c.  

noned.  

Wrong problem. Should be: Deletion of the key 4.e.  
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O(|V |2)
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(a) 7 (b) 16
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(a) 

(b)

(c)
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Permutation tree of job numbers, where the i�th job in a permutation is the assignment provided to
worker j

a.  

Full binary tree, where the i�th level determines at what side of the partition the ith node should
belong.

b.  
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(a) C(n, k) = 

FOR i = 1 TO n DO 
  FOR j = 1 TO k DO 
    IF i > j > 1 THEN C[i,j] = C(i-1,j)+C(i-1,j-1) 
    IF i = j > 0 THEN C[i,j] = 1 
    IF i > j = 1 THEN C[i,j] = i 

(b) None (for the boundary conditions in (a)):
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